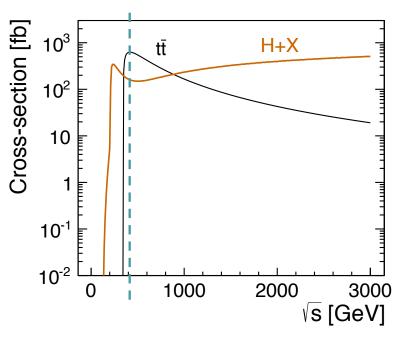


Physics at CLIC

Mark Thomson University of Cambridge



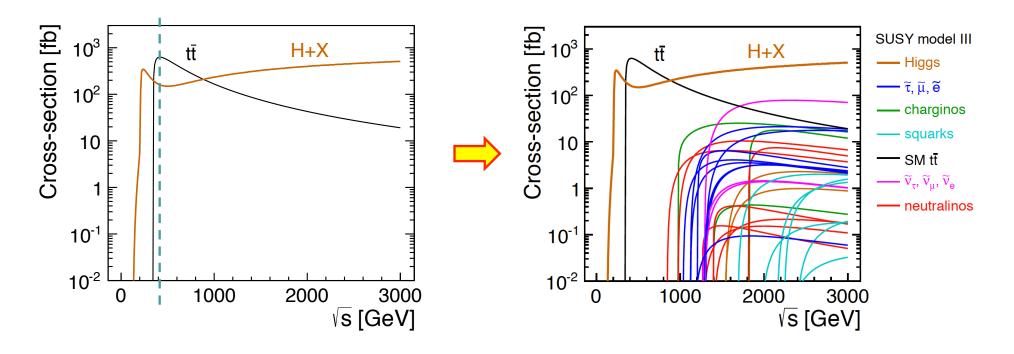
CLIC Physics Landscape I

CLIC is foreseen as a staged machine:

- **★** First stage would focus on precision SM physics
 - propose ~350-375 GeV : Higgs and top

- **★** Not the peak of Higgs cross section
 - But, luminosity scales with \sqrt{s}
- ★ 250 GeV and 350 GeV give similar precision for coupling measurements
- **★** But 350 GeV as a first stage:
 - provides access to top physics

- **★** Energies of subsequent stages motivated by physics
 - results from ~14 TeV LHC operation
 - direct dark matter searches,
 - •...

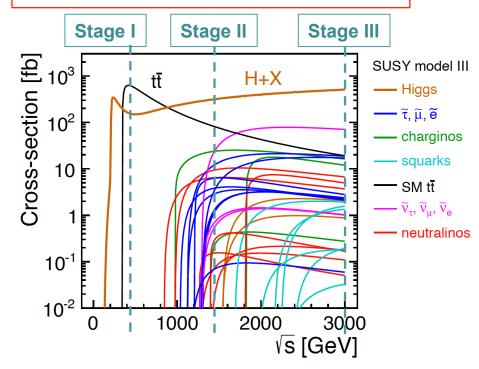


The Physics Landscape II

- ★ For example, illustrative SUSY "Model III*" of Vol.3 of CLIC CDR
 - Gauginos and sleptons at \sqrt{s} ~ 1.5 TeV
 - Squarks at √s ~2.5 TeV

Precision measurements at CLIC

*mSUGRA with non-universal squark masses with $tan\beta$ = 10, Allanach et al., CERN LCD-Note 2012-003

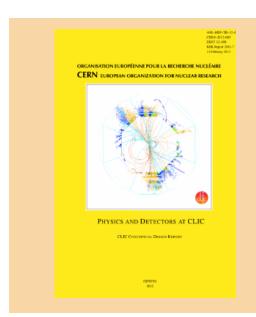

The Physics Landscape II

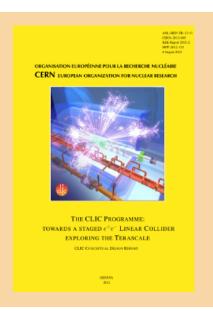
- **★** For example, illustrative SUSY "Model III*" of Vol.3 of CLIC CDR
 - Gauginos and sleptons at ~1.5 TeV
 - Squarks at ~2.5 TeV

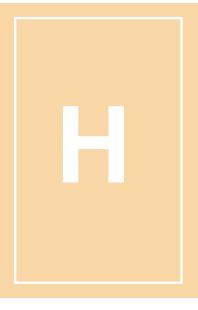
Section 10³ tt H+X 10² 10⁻¹ 10⁻² 0 1000 2000 3000 √s [GeV]

Precision measurements at CLIC

For example:

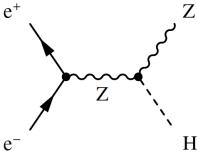

Stage I	~350 GeV	Higgs, Top	
Stage II	~1.5 TeV	Higgs, gauginos, sleptons	
Stage III	~ 3 TeV	Higgs, squarks, ?	

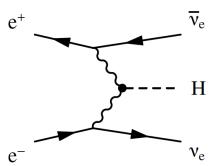


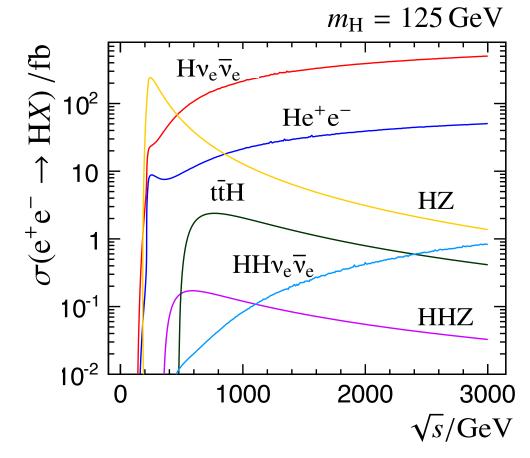

CLIC Physics Studies



- **★** A very active area in past few years
- * Recent CLIC studies focussed around 4 documents
 - CLIC CDR Vol. 2: CLIC physics at 3 TeV
 - CLIC CDR Vol. 3: CLIC physics for a staged machine
 - Higgs paper studies: Overview of Higgs physics 350 GeV 3 TeV
 - CLIC Physics Snowmass Whitepaper (draft version)

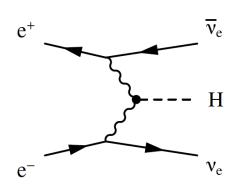

Higgs Physics at CLIC


Standard Model Higgs



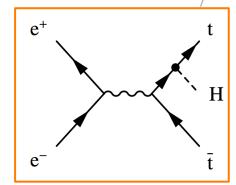
- **★** A number of SM Higgs processes accessible at CLIC
- **★** Below √s ~ 300 GeV Higgs-strahlung dominates

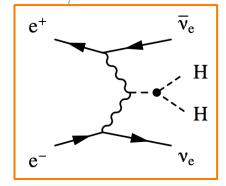
★ Above √s ~ 500 GeV WW fusion dominates


- ★ At \sqrt{s} = 350 GeV both contribute
- **★ CLIC** energy stages, provide a rich programme of precision Higgs physics

Higgs at Higher Energy

- ★ In a higher energy stage of CLIC...
 - Fusion cross section becomes large
 - + luminosity ~scales with √s
 - Large numbers of $H\nu_e\overline{\nu}_e$ events


	√s =		
	1.5 TeV	3 TeV	
Int Lumi [fb ⁻¹]	1500	2000	
Cross section	309 fb	510 fb	
Ν(Ηνν)	460,000	970,000	



Precise BR measurements

- ★ + Rarer processes give access to
 - top Yukawa coupling
 - Higgs self-couplings

Higgs Study Assumptions

- **★** For Snowmass white paper and Higgs publication
 - Study evolution of precision on Higgs properties over different stages
 - Assumptions:

	350 GeV	1.4 TeV	3 TeV
$\sigma(\mathrm{e^+e^-} \rightarrow \mathrm{ZH})$	133 fb	6 fb	1 fb
$_{\star}^{\star}\sigma(\mathrm{e^{+}e^{-}} ightarrow \mathrm{Hv_{e}}\overline{\mathrm{v}_{\mathrm{e}}})$	52 fb	244 fb	415 fb
Int. \mathscr{L}	$500 \mathrm{fb^{-1}}$	$1500{ m fb^{-1}}$	$2000{ m fb^{-1}}$
# ZH events	66,500	7,500	2,000
$\# Hv_e \overline{v}_e$ events	26,000	366,000	830,000

- ★ Many Higgs analyses in progress at 350 GeV and 1.4 TeV
 - most final states covered (a few holes)
 - + some updates of 3 TeV analyses (e.g. for mH = 125 GeV)

*unpolarised cross sections

What next?

★ After Higgs paper, the focus will shift...

- **★** Higgs: still loose ends...
 - Parameter fitting
 - H→ZZ at 350 and 1.4 TeV
 - Additional effort needed for H → WW

★ Plenty of other opportunities for new people

DESY, May 30, 2013

What next?

★ Top:

- A_{FB} and $\sin^2\theta_W$
- Top coupling to W, Z, γ, H
- CP violation in top decays
- FCNCs

★ Precision SM:

- M_W
- TGCs and QGCs, e.g. WW→WW scattering

★ BSM

- A major focus of CLIC physics at > 1.4 TeV
- List of possible topics will be defined
- Open to suggestions...

How to get involved

- ★ Regular analysis meetings at CERN
 - http://indico.cern.ch/categoryDisplay.py?categId=3222
 - always possible to attend by webex
 - Meetings typically quite full
 - always interesting...
 - If interested, please contact us:

mark.thomson@hep.phy.cam.ac.uk philipp.roloff@cern.ch

Summary

★ CLIC Physics:

- Very active area
 - lively and full bi-weekly analysis meetings
- Contributions from many people/groups
- Recent focus on Higgs physics
- Strong central support from CERN group
 - event generation, analysis advise, ...
- Plenty of opportunities to contribute...