ILC RTML overview

Nikolay Solyak

Fermilab

İİL

RTML Lattice update in TDR

ECFA Linear Collider Workshop DESY, May 27-31, 2013

1

ILC TDR Layout

N.Solyak, RTML

ΪĻ

RTML Beamlines in TDR lattice

- ERTL/PRTL: Electron/Positron Ring-to-Line from DR to Main Tunnel (EC_DL Dump Line)
- ELTL/PLTL: (E/P) Long-Transfer-Line 🧲 Return Line
- ETURN/PTURN:)
- ESPIN/PSPIN:

- **Turn-Around**
- **←** Spin rotator
- EBC1/PBC1: (E/P) 1st stage of Bunch Compressor (BC1_DL Dump Line)
- EBC2/PBC2: (E/P) 2nd stage of Bunch Compressor (BC2_DL Dump Line)

	Length TDR, m	Length RDR, m	∆s, m
ERTML	17 140.844	16 171,5	919.315
PRTML	15 948.136	14 791.983	1 156.153

Note: Lines EC_DL and BC1_DL now have same lattice design.

N.Solyak, RTML

Changes in RTML configuration (TDR vs. RDR)

- Central area (DR extraction lines)
 - RDR: DRX (200m)+Getaway(1100m)+Elevator (800m)
 - TDR: ERTL (~150m)
 - No vertical elevation in electron line;
 - Vertical merger in positron line to merge beams from 2 DR's,
 - Extraction to dump moved closer to DR and modified (like BC1)
- Skew Corr, Emittance Diagnostics and Collimation sections are moved to BDS tunnel as part of ELRL/PLRL, as well as Return Line.
- New H-dogleg in RTML in positron target area (tunnel geometry)
- Length of Return line increase to adjust TDR length in ML, curvature in Return line
- ETURN/PTURN ("Turnaround"): V and H-dogleg parameters are modified to fit new RTML-to-ML separation in tunnel
- BC1+BC2: minor modifications (BC1S was declined)
- Beam dump design was modified

ERTL/PRTL (Central Region)

First stage only bottom Positron DR built and V-dogleg For luminosity upgrade 2 positron DR's and 2 doglegs with merger

N.Solyak, RTML

IIL

RTML Long Transfer line

- Coupling correction, diagnostic and collimator section in first part.
- Mainly FODO lattice (45°/45°) with vertical curvature.
- Horizontal dogleg at positron target location.

IIL

Earth curvature in ELTL/PLTL

Cryogenic requirements in $ML \rightarrow$ Return Line need to be curved.

Geometric curvature of the beamlines is realized by means of vertical dipole correctors at each quad of the FODO lattice. A small vertical dispersion is then created and propagated along the line. The first 4 correctors and the last 4 correctors are used to match the curved section to the straight lines.

N.Solyak, RTML

ECFA LCWS, DESY, May. 27-31, 2013

7

A. Vivoli

ELTL/PLTL Dogleg design

- Dogleg of positron source to by-pass positron target.
- ERTML follows geometry of positron source/BDS systems.
- Radiation from positron target requires magnet free zone.
- FODO+BEND lattice used.

IIL

2-stage Bunch Compressor (back to RDR design)

2 stage BC design was finally selected for TDR design (more tunability, shorter bunch ~ 150 μ m is possible).

Modifications (for TDR):

- 3 CM's with quads for BC1 (ILC design instead of XFEL).
- 16 RF units in BC2 RF (48 CM's; 416 cavities) to reduce gradient.
- New parameter optimization of BC wigglers (S. Seletskiy)
- New output parameters from DR is used.
- New treaty point from RTML to ML

S. Seletskiy, A. Vivoli

N.Solyak, RTML

Design of the Wiggler

IIL

- Each wiggler consists of 6 identical cells
- Nonzero dispersion slope ($\eta^{\prime})$ is introduced at the entrance of each cell
- Wiggler cells are contained in FODO structure with 90° phase adv./cell
- Focusing and defocusing quads are placed in the zero dispersion regions
- There are 4 additional normal quads and 4 skew quads per wiggler (in cells 1,3,4 and 6) that are used for possible dispersion correction without introducing betatron coupling or mismatches.
- Sixteen bends allow tuning R56 while preserving beam's trajectory in quads

Differences between the current TDR design and the RDR (ILC2007b) lattice are minimal.

- Now the tuning quads are located in the second half of the wiggler cell; (in old lattice the tuning quads are located in the first half).
- Also the new wiggler has collimators (adjustable energy spoilers at the SQ location and fixed absorbers at the CQ location) in cells #1 and #3.

Final 0.3mm and 0.15 mm long beam

For the case of initial dp/p=0.11%, energy spread at 15 GeV:

- -1.13% for final 0.3mm long beam
- -1.85% for final 0.15mm long beam

Sensitivity to RF gradient is shown in table

Initial	Final beam length change (%) for 10% drop in BC2 RF gradient				
ap/p, %	bunch 300 um	Bunch 150 um			
0.11	1.3	7.1			
0.12	2.3	5.3			
0.137	3.0	9.0			

The plot shows the final 300um and 150um long beam for the case of initial dp/p=0.11%.

MSolyak, RTML

BC parameters for 150 um long final beam

Initia	al bea	am	BC1 parameter	S	Beam after BC1 BC2 parameters		Fin	al bea	Im			
dp/p, %	σ _z , mm	E, GeV	Grd/-φ, MeV/ deg	R ₅₆ , mm	dp/p, %	σ _z , mm	E, GeV	Grd/-φ, MeV/ deg	R ₅₆ , mm	dp/p, %	σ _z , mm	E, GeV
0.11	6	5	18.67 / 120	348	1.37	1.36	4.77	27.2 / 29.2	69	1.85	0.15	15
0.12	6	5	18.67 / 120	348	1.37	1.37	4.77	27.5/ 30.4	69	1.93	0.15	15
0.137	6	5	18.67 / 120	348	1.37	1.4	4.77	30.5 / 39	52.4	2.52	0.15	15

- The 150um final length is achievable for all three cases of initial energy spread.
- It requires higher RF2 gradient.
- The maximum final energy spread is 2.5%.

N2Solyak, RTML

ΪĹ

Collimators, Diagnostics, Extraction lines

- 3 Extraction lines in each side of RTML: DR exit, BC1 end, BC2 end.
- 4 Collimation sections: beginning of LTL, Turn-around dogleg, BC1, BC2 wigglers.
 - Betatron collimation $(10\sigma_x/60\sigma_y)$ with 2 horizontal spoilers at F-quad and 2 vertical spoilers at D-quad separated by 90 °. Absorbers after each spoiler.
 - Energy collimation @ $10\sigma_{E}$ in Turn-Around and $6\sigma_{E}$ in the wigglers.
 - In Turn-Around spoilers are at opposite dispersion position separated by I matrix in betatron phase. In wigglers they are at same dispersion and separated by –I in phase.
- 4 Diagnostic sections: beginning of LTL, end of Spin rotator, end of BC1 and BC2
- Skew quadrupole sections at beginning of LTL and at end of Spin Rotator.

IIL

- Extraction System can extract full beam for tune up or make fast bunch extraction.
- Extraction lines in RTL and BC1 can dump entire beam (220 kW, @ 5GeV). Extraction line in BC2 can only dump 1/3 of beam power (@ 15 GeV).
- Extraction line at BC1 can dump compressed and uncompressed beam (E=4.8-5 GeV, s_E = 0.11-1.42%), while the one at BC2 needs large energy acceptance.
- BC1 extraction lines was re-designed based on ideas developed for BC1S (single stage BC) For the renovated extraction lines we are combining the best features of both designs. (more details in S. Seletskiy talk, LCWS' 2012, Albuquerqe).

Renovated BC1 extraction line (w/o collimators)

- After BC1 the energy spread of compressed beam is small the nonlinear effects are weak and the beam can be contained with only two sextupoles (no collimators). In BC15 we use 5 sextupoles.
- Beam size on the dump window is 19.5mm² for both low energy spread beam. High energy spread beam are in dump window of 12.5cm diameter.
- The Extraction Line is 24.7m long, Dump is separated from the main beamline by 5.1m.

Same line is used for central area (EC_DL and PC_DL)

The renovation of the BC2 extraction line is in progress.

N5Solyak, RTML

LET studies overview

N.Solyak, RTML

Survey Alignment

Our old canonical set, should consider more realistic misalignments... Survey people would prefer we use cold specs for all components.

Error	Cold Sections	Warm Sections	With Respect To
Quad Offset	300 µm	150 µm	Cryostat
Quad Tilt	300 µrad	300 µrad	Cryostat
Quad strength	0.25%	0.25%	Design Value
BPM Offset	300 µm	200 µm	Cryostat/Survey
BPM-Quad Shunting	20 µm?	7 µm	Quadrupole
BPM Resolution	1 µm	1 µm	True Orbit
Bend tilt	300 µm	300 µm	Survey Line
Bend Strength	0.5%	0.5%	
RF Cavity Offset	300 µm	n/a	Cryostat
RF Cavity Pitch	200 µrad	n/a	Cryostat
Cryostat Offset	200 µm	n/a Survey Lin	
Cryostatic Pitch	20 µrad	n/a	Survey Line

N.Solyak, RTML

ΪĹ

Sources of emittance degradation

- Synchrotron radiation
 - From DRX arc, turnaround, BC wigglers
- Beam-ion instabilities
- Beam jitter

IIL

- From DR
- From stray fields
- Dispersion
 - DR extraction
 - Misaligned quads
 - Rolled bends

- Coupling

- DR extraction septum
- Rolled quads
- Misaligned bends
- Quad strength errors in spin rotator

– Pitched RF cavities

- Produce time-varying vertical kick
- RF phase jitter
 - Varies IP arrival time of beams
- Beam halo formation
- Collimator and cavity Wakefields
- Space charge
- Resistive wall wakes in vac. chamber

BBA @ ILC RTML

Several BBA are used:

- Ballistic Alignment (BA)
- Kick minimization (KM)
- Dispersion Free Steering (DFS)
- Dispersion Bumps
- 4D Coupling Correction
- Girder pitch optizationj
- Try
- Adaptive alignment
- Wakefield Bumps

Feed-Back and

Feed Forward system

N.Solyak, RTML

RTML

Not there yet... Budget just 4 nm

Region	BBA method	Dispersive or Chromatic mean Emittance Growth	Coupling mean emittance Growth
Return Line	Kick Minimization and feed-forward to remove beam jitter	0.15 nm	2 nm (without correction)
Turnaround and spin rotator	Kick Minimization and Skew Coupling Correction	1.52 nm (mostly chromatic)	0.4 nm (after correction)
Bunch Compressor	KM or DFS and Dispersion bumps	greater than 4.9 nm (KM + bumps) 2.68 nm (DFS and bumps)	0.6 nm (without correction)
Total		~5 nm almost all from BC	3 nm (without complete correction)

Jeff Smith RTML overview, Dec. 2007, SLAC (lattice 2006) Since that Lattice changed (2007, TDR)

N.Solyak, RTML

Getaway + Escalator + Return Line (2007b)

Correction: 1-1 + Kick Minimization + Dispersion Bumps + Coupling Correction Emittance growth along the line and Histogram of final emittance for 1000 seeds:

- → X/Y Offsets: Final average emittance growth is 0.48 nm (0.52 nm 90% c.l.)
- → Add Quad/Sbend Strength: Final average emittance growth is 0.68 nm (1.25 nm 90% c.l.)
- → Add Quad/Sbend Roll: Final average emittance growth is 1.87 nm (3.23 nm 90% c.l.)

N.Solyak, RTML

Turnaround + Spin Rotator (Solenoids OFF)

Correction: 1-TO-1 + Kick Minimization + Dispersion Bumps Emittance growth along the line and Histogram of final emattance for 1000 seeds:

→ X/Y Offsets: Final average emittance growth is 2.26 nm (5.33 nm 90% c.l.)

- Add Quad/Sbend Strength: Final average emittance growth is 3.69 nm (8.12 nm 90% c.l.)
- Add Quad/Sbend Roll: Final average emittance growth is 6.11 nm (12.73 nm 90% c.l.)

N.Solyak, RTML

Turnaround + Spin Rotator (Solenoids ON)

Correction: 1-TO-1 + Kick Minimization + Dispersion Bumps Emittance growth along the line and Histogram of final emittance for 1000 seeds:

→ X/Y Osets: Final average emittance growth is 2.14 nm (4.83 nm 90% c.l.)
 → Add Quad/Sbend Strength: Final average emittance growth is 4.63 nm (9.42 nm 90% c.l.)
 → Add Quad/Sbend Roll: Final average emittance growth is 6.86 nm (13.66 nm 90% c.l.)

N.Solyak, RTML

Entire Front-End

Correction: 1-TO-1 + Kick Minimization + Dispersion Bumps + Coupling Correction Emittance growth along the line and Histogram of final emittance for 1000 seeds:

→ X/Y Osets: Final average emittance growth is 1.06 nm (1.58 nm 90% c.l.)
 →Add Quad/Sbend Strength: Final average emittance growth is 2.01 nm (3.51 nm 90% c.l.)
 →Add Quad/Sbend Roll: Final average emittance growth is 5.36 nm (9.94 nm 90% c.l.)

N.Solyak, RTML

IIL

Coupling correction studies (J.Smith)

J.Smith, Coupling Correction in the ILC RTML, LEPP, Cornell Univ, Ithaca, NY, March 22, 2007

Tuning the skew quads when they are far from the wire scanners results in the introduction of both coupling and dispersion, which causes the optimization to get confused. However, the system was found to require the measurement of the coupling parameters <xy> at each wire scanner station. Optimizing of the vertical emittance is more effective then optimizing vertical beam size at each station (4D stations)

N.Solyak, RTML

Summary Tables for the "Front End"

Region	Errors	Emittand	ce Increase (nm)	Correction
		average	90% CL	
Escalator + Getaway + RL	X/Y Offsets	0.48	0.52	KM + knobs + CC
	+ Quad Strength	0.68	1.25	KM + knobs + CC
	+ Quad/Sbend Roll	1.87	3.23	KM + knobs + CC
Turnaround + Spin Rotator	X/Y Offsets	2.26	5.33	KM + knobs
(OFF)	+ Quad/Sbend Strength	3.69	8.12	KM + knobs
	+ Quad/Sbend Roll	6.11	12.73	KM + knobs
Turnaround + Spin Rotator	X/Y Offsets	2.14	4.83	KM + knobs
(ON)	+ Quad/Sbend Strength	4.63	9.42	KM + knobs
	+ Quad/Sbend Roll	6.86	13.66	KM + knobs
Entire "Front End"	X/Y Offsets	1.06	1.58	KM + knobs + CC
	+ Quad/Sbend Strength	2.01	3.51	KM + knobs + CC
	+ Quad/Sbend Roll	5.36	9.94	KM + knobs + CC

*Simulations done for 2007b RTML lattice (Placet, A.Latina, 2010)

Older PT's summary table for

2006 lattice (average emittance growth) →SLAC-Tech-Note-07-002

Errors	All Aberrations	Chromaticity	Dispersion	Coupling
X/Y Offsets	0.37 nm	0.37 nm	$0.00 \ \mathrm{nm}$	$0.00 \ \mathrm{nm}$
Add Quad Strength	3.20 nm	0.82 nm	0.01 nm	2.39 nm
Add Bend Strength	3.25 nm	0.82 nm	0.06 nm	2.39 nm
Add Quad Rolls	7.60 nm	1.49 nm	0.00 nm	$6.08 \ \mathrm{nm}$
Add Bend Rolls	7.61 nm	1.49 nm	$0.02 \ \mathrm{nm}$	$6.08 \ \mathrm{nm}$

Difference due to different lattices (2006 vs. 2007b), better coupling correction ???

N.Solyak, RTML

Beam Based Alignment in the Bunch Compressor

- Misalignments are 300 $\mu{\rm m},~{\rm BPM}$ resolution is 1 $\mu{\rm m}$
- RF-Kick wakes
- Dispersion Free Steering
 - two test beams

Input beam parameters:

- 6mm RMS length
- 0.11% RMS energy spread
- Case A: no Couplers. $\Delta \phi = \pm 25^o$ phase offset in both the RF sections of BC1+BC2
- <u>Case B</u>: Couplers
 - $\Rightarrow \Delta \phi = \pm 25^{o}$ phase offset in the RF section of BC1 (no phase offset in BC2)
 - \Rightarrow phase synchronization at entrance of BC2 is necessary
 - \Rightarrow otherwise RF-Kicks completely spoils the test beams, due to the large phase difference (10 $\sigma_z \approx 1 \text{ cm}$)
- Dispersion bumps optimization
 - minimize the final dispersion-corrected emittance by changing the dispersion at entrance
- Girder Pitch optimization
 - Compensation the effect of cavity pitches and coupler asymmetry
 - Using 3 CM in BC1 and 4 in BC2 (1 every 12)

N.Solyak, RTML

N.Solyak, RTML

Coupler RF-kick

• Couplers' asymmetry induces a transverse RF-kick: $\Delta \vec{V}_{RF} = (k_{\rm real} + ik_{\rm imag}) \, GL \, e^{-i(\phi_{RF} + ks)}$ where $\vec{k} \simeq (-7.2 + 11 \, i) \times 10^{-6}$ (HFSS calculations by A.Lunin).

• Kick has opposite sign at the head and the tail of the bunch

head

s<0

• Emittance growth due to RF-Kick (V. Yakovlev's analytical estimation) is

$$\Delta \epsilon \approx \frac{(F')^2 \sigma^2 \beta^3 \gamma_0}{2U_0^2} \left(1 - 2 \sqrt{\frac{\gamma_0}{\gamma(z)}} \cos(z/\beta) + \frac{\gamma_0}{\gamma(z)} \right)$$

center

s=0

kick

 $\Delta \vec{V}_{RF} = V_{\text{real}} \cos(ks) - V_{\text{imag}} \sin(ks)$

bunch

tail

\$>0

where ϵ_0 is the initial emittance, F' is the first derivative of the kick for z = 0, σ is the bunch length, β is the betatron amplitude, U_0 is the initial energy and γ_0 the corresponding relativistic factor.

 \Rightarrow Note that: when $z/\beta = 2 \pi n$ and there is no acceleration : $\Delta \epsilon = 0$

N.Solyak, RTML

ECFA LCWS, DESY, May. 27-31, 2013

Emittance oscillations

28

2-stage Bunch Compressor

Correction: 1:1 + DFS + Dispersion Bumps + Girder Optimization

Emittance growth along the line.

Histogram of the final emittance for 1000 seeds

→Minimum of the emittance is at ω= 2048 (weight in DFS)
→Average of final vertical emittance growth is 1.09 nm (1.48 nm 90% c.l.)

N.Solyak, RTML

Summary Tables for the Bunch Compressors

Region	Errors	Emittand	ce Increase (nm)	Correction
		average	90% CL	
BC1+BC2	X/Y/X'/Y' Offsets	0.98	1.6	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders
BC1+BC2 w/Couplers	X/Y/X'/Y' Offsets	1.09	1.48	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders
BC1S w/Couplers	X/Y/X'/Y' Offsets	2.3	3.0	DFS + knobs + Girders
	+ Quad Strength	-	-	DFS + knobs + Girders

Previous studies

FENENBAUM C-TN-07-004 Table 5: Summary of results from [1] and this study. All studies use KM steering as a first step.

2	Quad Offset	BPM Offset	Cavity Pitch	Knobs	Mean growth		90% CL Growth	
00	(μm)	(μm)	(μrad)		(nm)		(nm)
7, 2					Old	New	Old	New
y 2	150	7	0	None	6.8	3.6	15.1	7.1
uar	150	7	0	BC1	2.1	1.5	4.7	3.3
ebra	150	7	0	All	-	1.2	-	2.4
$F\epsilon$	150	7	300	BC1	9.2	4.9	17.6	9.5
	150	7	300	All	_	3.9	_	7.5

 K. Kubo, "Bunch Compressor KM steering – dispersion bump simulation – Vertical emittance dilution," presented at the 2007 EuroTeV / LET Meeting, Daresbury, UK (2007).

[2] P. Tenenbaum, "Application of Kick Minimization to the RTML 'Front End'," SLAC-TN-07-002 (2007).

N.Solyak, RTML

Dynamics effects in Return Line 12km (K.Kubo, 2006)

1. Fast Beam center position jitter due to quad motion (No corrections:))

- 100 nm RMS quad jitter will cause beam position jitter about 0.2 σ which will be tolerable
- Note that emittance increase due to this level of movements will not be signifcint.

2. Slow quad jitter (<0.1Hz) Emittance increase due to Quad misalignment with 1-to-1 corr.

30 μ m ($\sigma_{\rm E}$ =0.15%) quad offset increases emittance by 0.75%.

Simulated done for 0.3% beam energy spread. For nominal 0.15% increase is down by 4:

BPM is attached and perfectly aligned w.r.t. every quad.

Use Kick-minimization (KM)

- 300 µm RMS Quad offset and 30 µm RMS BPM-Quad relative offset error will be tolerable, using "Kick Minimization" → emittance increase less than 0.75%.
- 300 µrad Quad roll will increase emittance about 2.5%. (KM does not correct x-y coupling, need skew quads)

CONCLUSION

The long low emittance transport will not be a serious problem.

N.Solyak, RTML

Summary of Emittance Growth in RTML

Region	Errors	Emittan	ce Increase (nm)	Correction
		average	90% CL	
Escalator + Getaway + RL	X/Y Offsets	0.48	0.52	KM + knobs + CC
	+ Quad Strength	0.68	1.25	KM + knobs + CC
	+ Quad/Sbend Roll	1.87	3.23	KM + knobs + CC
Turnaround + Spin Rotator	X/Y Offsets	2.26	5.33	KM + knobs
(OFF)	+ Quad/Sbend Strength	3.69	8.12	KM + knobs
	+ Quad/Sbend Roll	6.11	12.73	KM + knobs
Turnaround + Spin Rotator	X/Y Offsets	2.14	4.83	KM + knobs
(ON)	+ Quad/Sbend Strength	4.63	9.42	KM + knobs
	+ Quad/Sbend Roll	6.86	13.66	KM + knobs
Entire "Front End"	X/Y Offsets	1.06	1.58	KM + knobs + CC
	+ Quad/Sbend Strength	2.01	3.51	KM + knobs + CC
	+ Quad/Sbend Roll	5.36	9.94	KM + knobs + CC
BC1+BC2 w/Couplers	X/Y/X'/Y' Offsets	1.09	1.48	DFS + knobs + Gi
	+ Quad Strength	-	-	DFS + knobs + Gi

Total growth vertical emittance: ~ 6 nm RMS (~ 11 nm 90% c.l.)

- Emittance growth is a bit larger (RDR budget 4nm), need revision (≤10nm?)
- Need further studies to reach goal for emittance growth ٠
- Cross-checking with different codes (important)
- Jitter in long Return line is not a serious problem. •

N.Solyak, RTML

ters

lers

Stray magnetic fields

RTML requirement for high frequency stray magnetic fields: B < 2 nT (studied by K.Kubo, 2006)

Magnetic field examples

- Commercial SC solenoid 10 Tesla (1 e+1)
- Earth magnetic field
- -50 micro-Tesla (5 e-5)

- Cell phone

116

– 100 nano-Tesla (1 e-7)

Frequency dependence

- < 0.1 Hz (can be compensated by control system)</p>
- > 100 kHz (attenuated in the structure)

Classification (following F.R.T.)

- 60 Hz and its harmonics (near-coherent with 5-Hz pulsing)
- Fields from RF systems (coherent with 5-Hz pulsing)
- Others (non-RF technical sources) (uncorrelated with pulses)

Previous work on Stray Field measurements (Conclusion : *we are mostly OK*)

- SLAC, "Sensitivity to Nano-Tesla Scale Stray Magnetic Fields", SLAC LCC Note-0140 (June 7, 2004) \rightarrow Data from SLC End station B.

- Fermilab studies at A0 (D.Sergatskov, 2006)
- DESY and CERN

N.Solyak, RTML

FNAL Magnetic Stray Fields Studies

- RTML requirement for stray fields in Return Line < 2nT (freq>1Hz)
- SLAC measurements (at Station A) are promising (~2nT)
- Need more studies for different sites. Stability of 60Hz is an issue

- Only 60/180/300 Hz peaks are removed
- \bullet 15, 30 and 45 Hz (Linac & Booster) \sim 5nT
- Other harmonics 120/180 /240Hz) $\sim 2nT$
- All the rest $\sim 2 \text{ nT}$

N.Solyak, RTML

IIL

Other annoying effects

There are a number of collective effects which are important in the RTML, and a few which are utterly unimportant.

<u>Ion Instability:</u> The fast-ion instability is important in the electron Return line, and sets the limit on the tolerable vacuum in that system. 20 nTorr produce $\sim 3\%$ beam jitter.

Electron Cloud: this effect is completely irrelevant in the RTML. The electrons dissipate completely in \sim 100ns between bunches.

<u>Collimator Wakefield:</u> A modest longitudinal taper should reduce kick from wakes to tolerable level to reduce beam jitter. Effect estimated analytically. Effect of resistive wake is also important.

Vacuum Chamber Resistive Wall Wakefields: kicks scale as the inverse-cube of the chamber size and inverse-square-root of the conductivity. Looks we are OK with RTML.

Space Charge: The vertical-plane incoherent space charge tune spread is about 0.15 for a beam with the parameters of the RTML in total beamline. it might be a problem for global emittance correction techniques, or for the dispersion matching and suppression in the Return line. Looks OK (P.<u>Spentzouris</u> studies, not reported publically)

- We are way past the 4 nm budget!
 - But we really haven't worked on it much yet and have more things to try.
- Upstream of the Bunch compressor no serious problems apparent
 - Well, provided stray fields in return line are no greater than 2 nTesla
 - ...and we can measure coupling with the wire scanners.
 - Vertically displaced bends?
- Need to address cavity pitches in Bunch Compressor.
 - DFS may work if tweaked for BC #2 but BC #1 cannot be DF steered.
 - There's only three cryomodules in BC #1 perhaps we can treat these with extra care when aligning, or place them on movers.
- Phase errors/stability in BC
- Dynamic effects and Feedback?????

- New TDR lattice for RTML beam-line is now available for LET studies (matched, Includes all features, etc.).
- Performances of the entire RTML have been evaluated, and resulted satisfactory. Budget for vertical emittance growth in RTML is ~8 nm. Goal is not achieved yet, but close
- Dynamics effects are studied (magnet strength and alignment jitter, magnetic stray fields, ...). Effect of other was estimated..
- Start to end simulation are needed
- Problem is available resources. Hope a new breath in Japan ILC.

Thank you for your attention.

N.Solyak, RTML