Gauge-mediated SUSY with tau slepton NLSP at the ILC

Tomohiko Tanabe (Tokyo) May 29, 2013 ECFA LC2013 @ DESY

1

Based on works in collaboration with: Sho Iwamoto, Shigeki Matsumoto, Norimi Yokozaki (Kavli IPMU), Keisuke Fujii (KEK), Taikan Suehara (Tohoku), Ryo Katayama, Takuaki Mori, Satoru Yamashita (Tokyo)

Contents

- LHC results + muon g-2
- Stau search at the LHC and LEP
- Stau search simulations at the ILC
- Summary and prospects

Introduction

Discovery at LHC:

See also talk by K. Hamaguchi

Higgs mass is **126 GeV**

Implications for SUSY:

The scalar top is heavy O(10-100) TeV or there is large left-right mixing of the scalar tops in the MSSM ... or require NMSSM

<u>Muon g-2:</u>

Suggests sleptons, higgsino, wino, and bino are in the O(100) GeV range.

Models with light sleptons

Models with heavy squarks and light sleptons which are compatible with muon g-2 can be realized e.g.

[Ibe, Matsumoto, Yanagida, Yokozaki, arXiv:1210.3122] NB) Consistent with GUT; GMSB \rightarrow no SUSY flavor/CP problem.

Stau search at LHC

If the stau lifetime is sufficiently long, it appears as a Heavy Stable Charged Particle.

LHC limit for direct stau pair production:

m(stau) > 340 GeV, if stau is (pseudo-)stable.

If the stau is light, it must decay!

Stau search at LEP

Stau decays

Stau search strategy is applicable in many models:

Decay to gravitino (GMSB)

Decay to axino

R-parity violation

 $\widetilde{\tau} \rightarrow \tau \widetilde{G}$ $\widetilde{\tau} \rightarrow \tau \widetilde{a}$ $\widetilde{\tau} \rightarrow \tau \nu_e, \ \tau \nu_\mu$ $\rightarrow \mu \nu_e, \ \mu \nu_{\tau}$ $ightarrow e
u_{\mu}$, $\mu
u_{ au}$

Common signature: tau + missing

Stau search at the ILC

- 1. Full simulation study at several benchmark points
- 2. Parameter scan with fast simulation

Full simulation study at the ILC

[Katayama, Mori, Fujii, Matsumoto, Suehara, TT, Yamashita, LC-REP-2013-010]

Stau mass: 120 GeV Stau lifetime: 100 μ m CM energy: 500 GeV Beam pol: P(e⁺,e⁻)=(+0.8, -0.3) Integrated lumi: 500 fb⁻¹

Impact parameter analysis: Δlifetime / lifetime = 1.4%

Assumptions:

selectron is heavy stau1 is partner of right-handed tau

Stau pair cross section: 136 fb

Summary and prospects

- Search for light sleptons is ever more important in the wake of the Higgs discovery at 126 GeV
- It is possible to build models compatible with 126 GeV Higgs and muon g-2
- LHC limits \rightarrow stau must decay if light
- ILC sensitivities in the O(1)% level for stau mass and lifetime
- ILC studies will continue to probe the different stau mass and lifetime ranges.

Thank you!