

Hit finding and pad response function for the LCTPC using resistive Micromegas

A. Bellerive, M. Dixit, and P. Hayman

D. Attie, P. Colas, and W. Wang

On behalf of the LCTPC collaboration

1

Carleton & TRIUMF

A. Bellerive – ECFA LC April 27, 2013

- Intro: LCTPC Collaboration and MPGD
- Charge dispersion and Signal Pulse
 - Electronic response
 - Definition of amplitude and time (A_i,t_i) for a pad
 - Conceptual Pad Response Function (PRF)
- Determination of PRF parameters (calibration)
 - Parameterization of the PRF
- Results
 - Field distortions
 - Transverse resolution
- Summary

Time Projection Chamber (TPC) for ILD

TPC is the central tracker for International Linear Detector

- Large number of 3D points \rightarrow continuous tracking
- Good track separation and pattern recognition
- Low material budget inside the calorimeters (c.f. PFA)
 - Barrel: ~5% X₀
 - Endplates: ~25% X₀
- Two options for endplate readout:
 - GEM: 1.2×5.8 mm² pads
 - Resistive Micromegas: 3×7 mm² pads
- Alternative: **pixel** readout with pixel size ~55×55 µm²

TPC Requirements :

- Momentum resolution: $\delta(1/p_T) < 9 \times 10^{-5} \text{ GeV}^{-1}$
- Single hit resolution 3.5T: $\sigma(r\phi) < 100 \ \mu m$ $\sigma(z) < 500 \ \mu m$
- Tracking eff. for p_T>1 GeV: 97%
- **dE/dx resolution** ~5%

Large Prototype

Micro Pattern Gas Detector (MPGD)

Technology choice for TPC readout: Micro Pattern Gas Detector

- more robust than wires
- fast signal & high gain

• no E×B effect

• low ion backdrift

better ageing properties easier to manufacture

MPGD readout modules under studied

Readout		Pad Size	Electronics	Groups
MPGDs	Double GEMs (Laser-etched)	(~ 1 × 6 mm ²	ALTRO	Asia
	Triple GEMs (wet-etched)	Pau)		DESY
	Micromegas (Resistive anode)	(~ 3 × 7 mm ² Pad)	AFTER	Saclay- Carleton

Large Prototype TPC

Endplate + 7 Micromegas modules

Charge Dispersion

Resistive Anode

Charge dispersion

- A high resistivity film bonded to a readout plane with an insulating spacer

- 2D continuous RC network defined by material properties and geometry.

- point charge at r = 0 & t = 0 disperses with time.

Micromegas + resistive anode

Pulse shape origin					
Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$		#	track	
Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$			mesh	
Induction gap	$R(t) = \frac{t}{T_{rise}} \qquad 0 < t < T_{ris}$ $= 1 \qquad t > T_{rise}$ $= 0 \qquad t < 0$	e		pads	
Preamplifier Response	$A(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right)$ $= 0$	<i>t</i> > 0 <i>t</i> < 0	1		
Resistive foil + glue 10	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x - t)}{\sigma_t \sqrt{\pi t h}}\right)^2$ $h = 1/RC$	$\left(\frac{x^2+y^2}{4th}\right)$	0 T _{rise}	t	

Pulse shape origin					
Transverse diffusion	$T(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma_x^2})$				
Longitudinal diffusion	$L(t) = \frac{1}{\sigma_t \sqrt{2\pi}} \exp(\frac{-t^2}{2\sigma_t^2})$				
Induction gap	$R(t) = \frac{t}{T_{rise}} \qquad 0 < t < T_{ris}$ $= 1 \qquad t > T_{rise}$ $= 0 \qquad t < 0$	e	H(t) 1		
Preamplifier Response	$H(t) = \exp\left(-\frac{t}{t_f}\right) \left(1 - \exp\left(\frac{t}{t_r}\right)\right)$ $= 0$	<i>t</i> > 0 <i>t</i> < 0) 1 Vour function		
Resistive foil + glue	$\rho(x, y, t) = \left(\frac{1}{\sigma_t \sqrt{\pi t h}}\right)^2 \exp\left(\frac{-(x)}{h}\right)^2$ $h = 1/RC$	$\left(\frac{x^2 + y^2}{4th}\right)$	0 T _{rise} t		

-

C+

Raw Charge Shape versus Shaped Pulse

Amplifier

Pads

Storage

Figure: N. Shiell

Raw Charge Shape versus Shaped Pulse

$$H(t) = A_0 \left(\frac{t}{\tau}\right)^3 \sin(\frac{t}{b\tau}) \exp(-\frac{t}{\tau})$$

٠

from Eric Delagnes etal at Saclay

Stand-Alone Calculation

CRUCIAL TO CHARACTERIZE DETECTOR PARAMETERS

Stand-Alone Calculation

Parameter	Initial value	Final value
Drift speed	76.98 um/ns	fixed
Transverse diffusion	95.4 um/root(cm)	fixed
Longitudinal diffusion	231.289 um/root(cm)	fixed
Resistivity	2.9 MOhm/sq	fixed
Glue thickness	75 um	fixed
Dielectric constant	4.5	2.66
Induction time	120 ns	166 ns
b (shaper)	3.7	3.42
τ (shaper)	151 ns	$151 \mathrm{~ns}$
Pad angular width	0.001984 rad	fixed
Pad height	6.84 cm	fixed
Lower radius of bottom row	$1.522457785 { m m}$	fixed
X_0 track	event dependent	
ϕ track	event dependent	
Drift distance	$30 \mathrm{cm}$	$30 \mathrm{~cm}$

NEED INPUT OF DESIGN ENGINEER AND ELECTONIC EXPERT

Shaped Pulse (for different shaping time)

Pad Amplitude

Use the maximum as the amplitude Single Point Maximum(SPM) A_i = max pulse height P(i)

Pad Amplitude

method used here

2) Maximum of Parabola
 Quadratic Fit Method (QFM)
 A_i = max of parabola P(i)

Pad Amplitude

Method use pre-2011

3) Integrate above threshold Re-integration method (RM) $A_i = Sum P(i)$

Pad Amplitude

Method use in 2011

Pad Response Function (PRF)

For a given X_{track} (known position) the PRF is defined to be unity

Pad Response Function (model)

- Only two parameters (simpler model)
- Easier to work with
 - Better fits to data

PRF versus Z

Single Module LCTPC (MM)

Period: 2008-2011

2011 data Single module

Transverse Resolution MM

26

Source: Nicholi Shiell M.Sc. Thesis Carleton University

7-module LCTPC (MM)

Period 2012-2013

2013 data 7-module

Resistive MM: Module Design

Resistive MM: Module Design

Analysis Framework: MarlinTPC

- MarlinTPC (LCIO) is the global effort to develop a single analysis code package for all the different prototype TPCs being developed.
- It is far from complete, but it has a solid foundation
- Furthermore, not sustainable to rely on stand alone code with hardcoded geometry, stand alone track-fit algorithm, calibration constants, etc...
- MarlinTPC processors: calibration for PRF determination, bias corrections and resolution determination (transverse and longitudinal)

Multi-track Pattern Recognition Kalman Filter within MarlinTPC – LCIO geometry

Acknowledment: Bo Li Keisuke Fujii Martin Killenberg

Single-track events for calibration PRF calculation – bias – resolution study

Field Distortions (E x B effect)

Transverse Resolution MM

2013 data 7 module

Transverse Resolution

Micromegas (MM) versus GEM Extrapolate to B=3.5T

37

 A lot of experience has been gained in building and operating Micromegas TPC panels.

Summary

- The characteristics of the Micromegas modules, such as the uniformity, spatial resolution, stability have been studied in detail.
- 7 modules have been successfully tested with full integration of the electronics at the same time. The modules have been manufactured and characterized in a quasi-industrial process.
- Thanks to the resistive technology, the measured resolution is about 60 microns at zero drift distance with 3 mm wide pads. This meets ILC requirements of 100 μ m single hit resolution in r ϕ (over 2 m drift).

A. Bellerive – ECFA LC May 29, 2013

ilc.....

23/03/12

Uniformity of Resistive Anode

Mean Residual vs Row Number

Z-independent distortions

Distortions up to 50 microns for resistive ink (blue points)

RMS of 7 microns for CLK film (red points)

