Occupancy Studies for the CLIC_ILD TPC with Pad and Pixel Readout

Martin Killenberg*

On behalf of the CLIC detector and physics study

ECFA Linear Collider Workshop 2013 DESY, Hamburg 29. May 2013

^{*}Now with DESY

The CLIC_ILD_TPC

Same dimensions as the ILD TPC

- Inner radius 395 mm (active area)
- Outer radius 1.739 mm (active area)
- $1 \times 6 \text{ mm}^2 \text{ pad (default pad size)}$
- 224 pad rows (default pad size)
- T2K gas $(Ar/CF_4/iC_4H_{10} 95/3/2)$
- $v_{\text{drift}} = 79 \text{ mm/}\mu\text{s}$

Voxel size (3D space bucket):

- Pad size \times $t_{\text{sample}} \cdot v_{\text{drift}}$
- $\approx 1 \text{ mm} \times 6 \text{ mm} \times 2 \text{ mm}^{\dagger}$

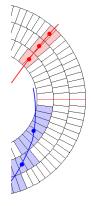
 $^{^{\}dagger}$ With 40 Mhz readout frequency and $v_{drift} = 79 \text{ mm/}\mu\text{s}$

Conditions at CLIC (3 TeV)

Beam parameters

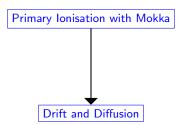
	CLIC (3 TeV)	ILC (500 GeV)
Bunch spacing	0.5 ns	554 ns
Bunches per train	312	1312
Bunch train length	156 ns	727 µs
Bunch train repetition	50 Hz	5 Hz

Readout time of the TPC $\mathcal{O}(30 \mu s)$: TPC integrates a full BT (physics and background)!


Beam induced backgrounds

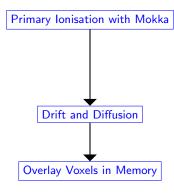
- 300,000 incoherent e⁺e⁻ pairs per BX from beamstrahlung
- 3.2 $\gamma\gamma \to {\rm hadrons} \ {\rm events} \ {\rm per} \ {\rm BX}$
- 1 beam halo muon per BX

All occupancies calculated without safety factor!


Primary Ionisation with Mokka

Simulation

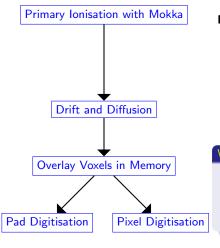
- Default Mokka driver places one hit in the middle of the pad row
 - Pad response not realistic for low angle tracks
 - Delta electrons and micro curlers also occupy voxels:
 - ⇒ Need detailed charge depositions
- ⇒ Run Mokka TPC driver with step length limit of 200 μm
 - Realistic ionisation clusters


Drift and Diffusion

- Calculate number of electrons from energy in Mokka hit
- Drift each electron separately
- Displace according to diffusion

Why so detailed?

- Most clusters only have few (1, 2, 3) electrons
- Continuous Gaussian smearing is not very realistic
- ⇒ Displacing individual electrons is a better description of the fluctuations


Voxelisation using 3D voxel map

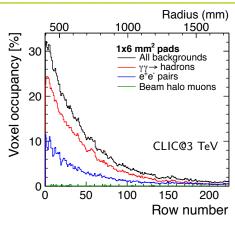
- Smear amplified charge with diffusion in MPGD
 - Triple-GEM for pads
 - Micromegas for pixels (InGrid)
- Calculate fraction on each pad
- Put charge into corresponding voxel

Why so detailed?

- Realistic charge content of each pad and time bin
- Overlay different bunch crossings in memory

Digitisation

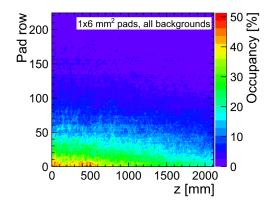
- Apply electronics shaping for each incoming voxel
- Calculate ADC values for each time sample
- Apply electronics thresholds
- Write out pixel or pad raw data


Why so detailed?

- Electronics shaping can affect the z-resolution and occupancy
- ADC dynamic range can affect overall performance

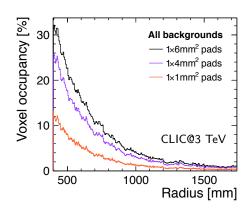
Occupancies are calculated from the digitised raw data

Occupancy for the Different Backgrounds



- Occupancy is up to 30 % for the inner pad rows (averaged over z and φ)
- Largest component is $\gamma\gamma \to {\sf hadrons}$ (25 %)
- Incoherent e⁺e⁻ pairs cause up to 10 % occupancy
- Beam halo muons are negligible

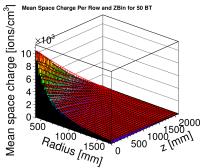
Occupancy in Dependence on z



CLIC@3 TeV

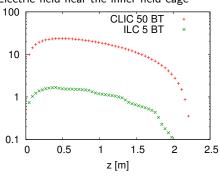
- \bullet Occupancy near the IP is up to 50 %
- \bullet Near the readout (forward region) occupancy below 20 %

Occupancy for Different Pad Sizes



- \bullet 1×1 mm² reduces the occupancy to a tolerable level
- $1 \times 1 \text{ mm}^2$ cannot be implemented with current technology \rightarrow needs further R&D

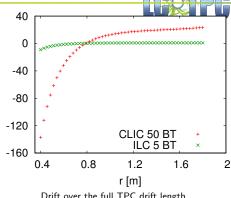
Space Charge and E-Field Disortions


- Ion drift time $\mathcal{O}(1 \text{ s})$
- 50 bunch trains @ CLIC
- 5 bunch trains @ ILC

Primary charge from 50 BT at CLIC@3 TeV

- Very high charge near the cathode
- Charge up to 10,000 ions/cm³

Electric field near the inner field cage



- ullet E_r for 50 BT at CLIC is up to 25 V/cm
- E_z component will not be negligible
- Effects on drift velocity and diffusion
- Simulations have to be adapted to include these effects!

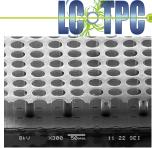
Drift Distortions Near the Inner Field Cage

Calculations Based on Keisuke Fujii's ioneffects programme

- Parameterised ion density $(p_0 + p_1 z + p_2 z^2)/(r - p_3)^2$
- No φ dependence
- \bullet Calculate E_r by solving Green's function (see Keisuke's talk at the LCTPC collaboration meeting 2012)
- "Track" electrons along z for r = const
- Calculate $\Delta(r\varphi)$ for fix E_z , Band $\omega \tau$

Drift over the full TPC drift length

- Distortions for II C are small. (9 µm for 5 BT)
- Distortions for 50 BT CLIC not negligible: 137 µm need to be corrected for
- Changes in E_z , drift velocity and diffusion are not included


Δrφ [μm]

Pixel Readout for a TPC

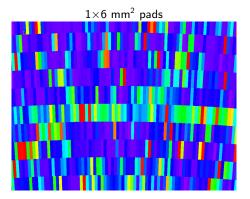
InGrid-like "TPCPix" readout

Simulate the "ideal" readout chip

- Integrated micro mesh √
- Time and charge per pixel √
- Fast shaping time (ADC per pixel) √
- Unlimited multi-hit capability √
- Polya-like gas gain fluctuations (not impl. yet)
- Adjustable cross-talk (not impl. yet)

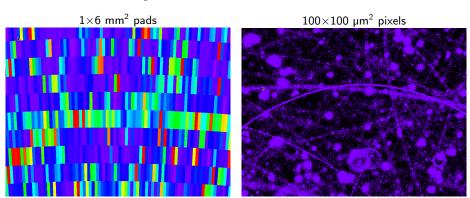
Timepix chip with integrated micro mesh

Detect every primary electron

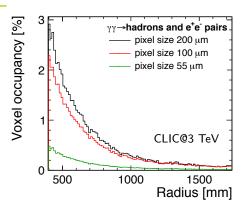

- Ultimate spatial resolution
- Best possible track separation (only limited by diffusion)
- \bullet Reject delta electrons \Rightarrow improve dE/dx and momentum resolution

Studies:

- Occupancy at CLIC (full bunch train of beam background)
- Momentum resolution
- dE/dx (planned)
- Tracking efficiency (requires full reconstruction)


1 bunch train of background for CLIC@3 TeV

 $\approx 75 \times 60~\text{mm}^2$ at a central radius of 550 mm


1 bunch train of background for CLIC@3 TeV

 $\approx 75 \times 60~\text{mm}^2$ at a central radius of 550 mm

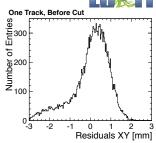
Occupancy for Different Pixel Sizes

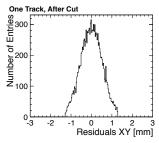
- Factor 4 in voxel occupancy between 55 μm and 100 μm pixels
 - ⇒ Each voxel is only occupied by one electron / cluster
 - \Rightarrow 55 μ m and 100 μ m pixels can resolve individual electrons
- Factor 1.3 between 100 μm and 200 μm pixels
 - \Rightarrow More than one electron / cluster per voxel for 200 μm pixels

Consistent with expectations (primary cluster distance, diffusion)

Momentum Resolution with Pixel Readout

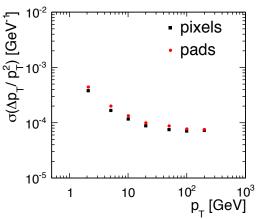
"Reconstruction":


No pattern recognition for pixels available


- Current Kalman filters work layer (pad row) based
- Hough-transform does not work (too many pixels)

Current solution for single tracks without background and noise

- Fit a helix to all recorded pixels
- Treat all pixels equally (digital readout, charge information not used)
- Perform outlier rejection (delta electrons) → cut at 2.5 RMS.
- Iterate



Momentum Resolution with Pixels and Pads

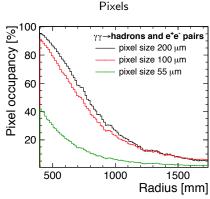
LOTPO-

1000 muons from the IP per energy

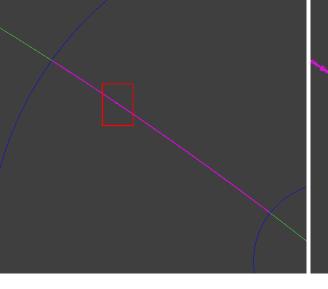
- Pixel momentum resolution@200 GeV $\sigma(\Delta p_{\rm T}/p_{\rm T}^2)$ =7.3 · 10⁻⁵ (100×100 µm² pixels, simple helix fit)
- Slightly better than resolution for pads($\sigma(\Delta p_{\rm T}/p_{\rm T}^2)$ =7.5 · 10⁻⁵@200 GeV) 1 × 6 mm² pads, Mokka driver in default mode + MarlinReco / LEPTracking (Kalman Filter)

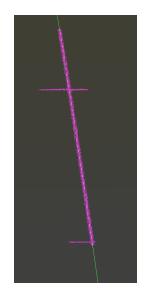
Difficult TPC conditions at CLIC

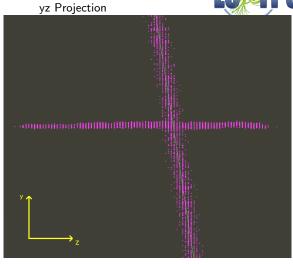
- Occupancy with default pad readout ($1\times6~\text{mm}^2$) is up to 30 % in the inner pad rows at 3 TeV (ALICE TPC is designed to work up to 40 %)
- ullet Mainly $\gamma\gamma o$ hadrons, also micro-curlers from incoherent e^+e^- pairs
- Space charge causes field distortions up to 10 %, has to be corrected for
- TPC pixel readout is a promising option
 - Occupancy below 3 %
 - Momentum resolution comparable or better than for pad readout
 - dE/dx to be studied
 - Pattern recognition and amount of data have to be addressed


Backup

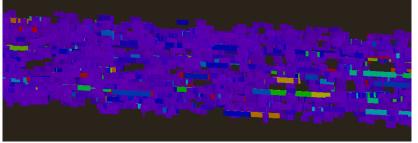
Pad / Pixel Occupancies

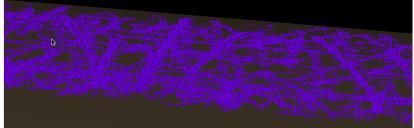

Fraction of pads / pixels which see signal within a bunch train



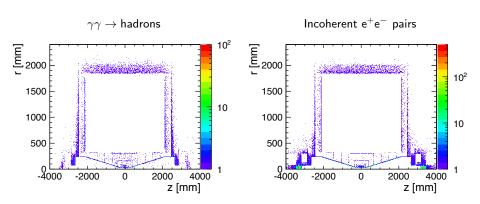


xy Projection



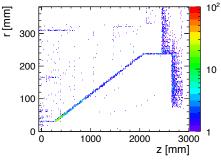

Binning in z due to 40 MHz readout frequency $\hat{=}$ 2 mm drift distance

$1 \times 6 \text{ mm}^2 \text{ pads}$


 $100{\times}100~\mu\text{m}^2$ pixels

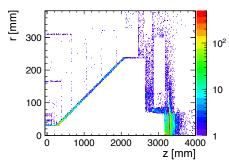
Where do the Particles Come From?

Origins of the MC particles leaving a signal in the TPC


Backscattered particles from all over the detector

Where do the Particles Come From? (zoomed)

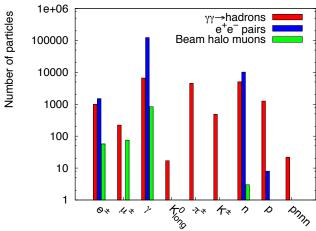
Origins of the MC particles leaving a signal in the TPC



Hot regions:

- Inner region of the pointing beam pipe
- \sim 25 % directly from the IP (one pixel in the plot)

Incoherent e⁺e⁻ pairs

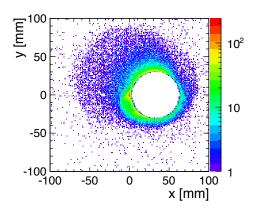


Hot regions:

- BeamCal (low energetic photons)
 Can this be optimised with a different design?
- Inner region of the pointing beam pipe

Particles Entering the TPC

Direct and Scattered Particles


	Fro	From source [‡]		Total	
Background	Count	$E_{ m dep}$ [GeV]	Count	$\textit{E}_{ ext{dep}}$ [GeV]	
$\gamma\gamma ightarrow hadrons$	4770	4.06	19154	11.0	
incoherent ${ m e^+e^-}$ pairs	176	0.0717	134908	15.9	
beam halo muons	75	0.107	973	0.304	

[‡]IP or beam halo muons scoring plane

Backscattering Particles from the BeamCal

Origins of the MC particles leaving a signal in the TPC

