Positive ions backflow in the LCTPC: status of the possible gating systems

Philippe Gros Saga University, Japan

Outline

- Ion backflow at LCTPC
- GEM gate
- Wire gate
- Conclusions and outlook

Ion back flow in LCTPC

- Simulation by D.Arai and K. Fujii
 - Using BG simulation by A. Vogel
 - Assuming back flow rate of 3

2013-05-29

Ion back flow in LCTPC

 Primary ions (produced in the drift volume)

~8µm

 Secondary ions (produced in amplification)

~60µm (too big)

Possible solutions

- Block secondary ions with a gate
 - Strong engineering constraint on the TPC design
- Correct in software
 - Require to keep track of all the background
 - Needs to be very well understood and calibrated
- Reduce ion back flow as much as possible
 - Strong reduction needed
 - Has to accommodate unexpected background

GEM gate

- Preliminary experiments
 - transparency measurement
 - resolution measurement
- Simulation
 - Reproduce the experiment
 - Large aperture, high B field

GEM gate experiments

- Transparency measurement
 - Compare the signal create before and after the gate
 - Systematic effects cancel out
- Space resolution
 - MPTPC&PCMAG
 - calculate
 Neffective

2013-05-29

Experiment Result

 Transparency ~50% at B=1T

Drift distance [mm]

2013-05-29

Ion gating Philippe Gros,

Simulation

- Using Garfield++ and ANSYS
- Reproduces the experimental transparency measurement

Large aperture

- Maximize the aperture
- Honeycomb structure
- 10µm wide, 100µm pitch
 - 90% aperture
 - difficult to build

First result

- Without magnetic field
- Good transparency requires extreme conditions

Ion gating for LCTPC Philippe Gros, Saga University

With 3.5T B field

- $\omega \tau \sim 10 =>$ the electrons follow B, little diffusion
- Electric field and thickness have little influence
- Geometric transparency (81%)

Outlook on GEM gate

- In high B field, geometrical aperture is the key parameter
- Difficulties are mechanical
 - Maybe improved with thicker metal

13

Wire gate

- Well known technology
- Difficult to adapt to the module structure
- Possible effects of B field
 - => <u>Radial wires</u>
 - No radial support structure: minimises dead regions
 - ExB in the wire direction => minimises distrotions

Radial wire gate prototype

2013-05-29

Status

- 3 prototypes were built
 - 30µm wires, 2mm pitch
 - spot welded on stainless steel frame
 - only one potential: no alternate potential closed gate scheme
- Could not be tested yet
 - small design error has to be fixed
- Planned test with laser at KEK
- Needs to be tested in B field

Conclusions and outlook

- An ion gate is necessary to reach the performance requirements of LCTPC
- Two technologies are considered: GEM or wires
 - Simulations show that at high B field, a GEM gate's transparency is defined by the geometrical aperture. Mechanical solutions have to be studied
 - A gate prototype with radial wires has been produced and will be tested at KEK