Study of Higgs self-coupling at 500 GeV and 1 TeV at ILC

---based on the ILD full simulation

Junping Tian, Keisuke Fujii (KEK)

ECFA LC2013, May 27-31 @ DESY, Hamburg

outline

- introduction
- sensitivity of coupling to cross section
- DBD analysis: ZHH @ 500 GeV
- DBD analysis: vvHH (fusion) @ 1TeV
- efforts ongoing and prospects
- summary

motivation of Higgs self-coupling measurement Higgs Potential: $V(\eta_H) = \frac{1}{2}m_H^2\eta_H^2 + \lambda v \eta_H^3 + \frac{1}{4}\lambda \eta_H^4$ physical Higgs field mass term trilinear coupling SM: $\lambda = \lambda_{SM} = \frac{m_H^2}{2v^2}$ $v \sim 246$ GeV LHC and ILC, even SLHC!

- just the force that makes the Higgs boson condense in the vacuum (a new force, non-gauge interaction).
- direct determination of the Higgs potential.
- accurate test of this coupling may reveal the extended nature of Higgs sector, like THDM and SUSY.
- difficult to measure at LHC for a light Higgs.

Heidi Rzehak's talk $ \Delta hVV $		$ \Delta h \overline{t} t $	∆ <i>h</i> bb	$ \Delta hhh $
Mixed-in Singlet	6%	6%	6%	18%
Composite Higgs	8%	tens of %	tens of %	tens of %
MSSM	< 1%	3%	10%, 100%	2%, 15%

Measurement of the trilinear Higgs self-coupling @ ILC

• double Higgs-strahlung (dominate at lower energy)

• WW-fusion production (become important at higher energy)

one of the reasons why 500 GeV

General issue: from cross section to the couplingeffect of irreducible diagrams $\sigma = a\lambda^2 + b\lambda + c$

these diagrams significantly degraded the coupling sensitivity

General issue: running of the sensitive factor and expected coupling precision at different Ecm

$$\frac{\Delta\lambda}{\lambda} = \mathbf{F} \cdot \frac{\Delta\sigma}{\sigma}$$

Factor increases quickly as going to higher energy

for ZHH, the expected optimal energy ~ 500 GeV (though cross section is maximum ~ 600 GeV)

for vvHH, expected precision improves slowly as going to higher energy General issue: cross sections of each contribution $\sigma_0 = a\lambda^2 + b\lambda + c = \sigma_S + \sigma_I + \sigma_B$

new weighting method to enhance the coupling sensitivity

$$\frac{d\sigma}{dx} = B(x) + \lambda I(x) + \lambda^2 S(x)$$
irreducible interference self-coupling
bservable: weighted cross-section
$$\sigma_w = \int \frac{d\sigma}{dx} w(x) dx$$

equation of the optimal w(x) (variance principle):

$$\sigma(x)w_0(x)\int (I(x) + 2S(x))w_0(x)dx = (I(x) + 2S(x))\int \sigma(x)w_0^2(x)dx$$

general solution:

$$w_0(x) = c \cdot \frac{I(x) + 2S(x)}{\sigma(x)}$$

c: arbitrary normalization factor

difficulties for the analysis

fundamental:

- irreducible SM diagrams, significantly degrade the coupling sensitivity.
- very small cross section (σ_{ZHH}~0.22 fb with P_L) and we are only using ~40% of the signal (both H-->bb). large integrated luminosity needed. (high beam polarization helped a lot)
- huge SM background (tt/WWZ, ZZ/Zγ, ZZZ/ZZH), 3-4 orders higher.

strategic:

- Higgs mass reconstruction: mis-clustering, missing neutrinos, wrong pairing.
- flavor tagging and isolated-lepton selection: need very high efficiency and purity.
- neural-net training: separated neural-nets, huge statistics needed.

analysis strategy and status $e^+ + e^- \rightarrow ZHH @ 500 \ GeV$

searching mode and main backgrounds in each mode:

- **IIHH:** Ilbb (ZZ, γ Z, bbZ), lvbbqq (tt-bar), llbbbb (ZZZ/ZZH)
- vvHH: bbbb (ZZ, γZ, bbZ), τvbbqq (tt-bar), vvbbbb (ZZZ/ZZH)
- qqHH: bbbb (ZZ, γZ, bbZ), bbqqqq (tt-bar), qqbbbb (ZZZ/ZZH)

event selection:

- isolated-lepton selection or rejection
- jet clustering and flavor tagging
- missing energy or visible energy requirement
- event reconstructed as from signal and dominant background
- each dominant background is suppressed by training a neural-net

to make the result stable, high statistics (~10 ab⁻¹) is used

strategy for vvHH @ 1 TeV is quite similar

flavor tagging performance in qqHH mode Thanks to developers of LCFIPlus (T. Tanabe and T. Suehara)

Isolated lepton selection (llHH)

electron ID

- Eecal/Etot > 0.9
- 0.5 < Etot/P < 1.3
- from primary vertex
- P > 12.2 + 0.87Econe

(Etot = Eecal + Ehcal)

muon ID

- Eyoke > 1.2
- Etot/P < 0.3
 - from primary vertex
- ne P > 12.6 + 4.62Econe

BS and FSR recovery adapted from ZFinder

efficiency of two isolated lepton selection (much better for DBD)

Eff (%)	eeHH	μμΗΗ	bbbb	evbbqq	µvbbqq
DBD	85.7	88.4	0.028	1.44	0.10
LoI	81.9	85.4	0.43	2.71	1.94

categorization and neural-net outputs in qqHH mode

DBD full simulation

Higgs self-coupling @ 500 GeV (combined)

P(e-,e+)=(-0.8,+0.3)

 $e^+ + e^- \rightarrow ZHH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$

	Energy (GeV)	Modes	signal	background	significance	
				(tt, ZZ, ZZH/ ZZZ)	excess (I)	measurement (II)
	500 $ZHH \rightarrow (l\bar{l})(b\bar{b})(b\bar{b})$	3.7	4.3	1.5σ	1.1σ	
		$2\Pi\Pi \rightarrow (ll)(00)(00)$	4.5	6.0	1.5σ	1.2σ
	500	$ZHH ightarrow (u ar{ u}) (b ar{b}) (b ar{b})$	8.5	7.9	2.5σ	2.1σ
	500	$ZHH ightarrow (qar{q})(bar{b})(bar{b})$	13.6	30.7	2.2σ	2.0σ
			18.8	90.6	1.9σ	1.8σ

DBD full simulation

Higgs self-coupling @ 1 TeV P(e-,e+)=(-0.8,+0.2) $e^+ + e^- \rightarrow \nu \bar{\nu} HH$ M(H) = 120 GeV $\int Ldt = 2ab^{-1}$

	Expected	After Cut
vvhh (WW F)	272	35.7
vvhh (ZHH)	74.0	3.88
BG (tt/ $\nu\nu$ ZH)	7.86×10 ⁵	33.7
significance	0.30	4.29

- better sensitive factor
- benefit more from beam polarisation
- BG tt x-section smaller
- more boosted b-jets

Double Higgs excess significance: $> 7\sigma$

Higgs self-coupling significance: $> 5\sigma$

efforts going on

- include the H-->WW* mode (see next talk by Masakazu).
- investigate the kinematic fitting (DESY group, Claude and Jenny).
- re-optimize the analysis strategy (current selections are optimized for ZHH or vvHH, not for the self-coupling diagram).
- consider the beam background overlay.
- new signal samples with Higgs mass of 125 GeV.
- new color-singlet jet-clustering to improve the mass resolution

Color-singlet Jet-clustering

(challenging)

- the mis-clustering of particles degrades the mass resolution very much
- it is studied using perfect color-singlet jet-clustering can improve $\delta\lambda \sim 40\%$
- Mini-jet based clustering (Durham works when Np in mini-jet ~ 5, need better algorithm to combine the mini-jets, using such as color-singlet dynamics: rapidity gap, coplanarity, energy pdf)
- looks very challenging now...

17

prospects

effect of positron polarisations

 $P(e^{-}) = -0.8$

P(e+)	0	+0.3 (+0.2)	+0.6 (+0.4)
ZHH @ 500 GeV	50%	44%	40%
vvHH @ 1 TeV	20%	18%	16%

ILC Luminosity UpgradeTim Barklow's talk3.2 ab⁻¹ ~ 6 years @ 500 GeV; 5 ab⁻¹ ~ 6 years @ 1 TeV

	TDR-Upgrade
ZHH @ 500 GeV	44%>35%
vvHH @ 1 TeV	18%>11%

Summary

- measuring Higgs self-coupling is one of the fundamental task for the next generation Linear Collider.
- results from DBD full simulation:

 $\delta\lambda/\lambda \sim 44\%$ by ZHH @ 500 GeV, P(e-,e+)=(-0.8,+0.3), 2 ab⁻¹

 $\delta \lambda / \lambda \sim 18\%$ by vvHH @ 1 TeV, P(e-,e+)=(-0.8,+0.2), 2 ab⁻¹

Double Higgs excess significance: $5.0\sigma @ 500 \text{ GeV}$, $7.2\sigma @ 1\text{TeV}$.

- effect of irreducible diagrams degraded the coupling sensitivity. a new general weighting method developed, ~10% improvement for coupling.
- key algorithms: b-tag, lepton-finder, jet-finder.
- lots of efforts are ongoing for the further improvement.

backup

P value and Significance

excess: assuming there is no signal, the probability of observing events equal or more than the expected number of events (S+B).

measure: assuming signal exists, the probability of observing events equal or less than the expected number of background events (B).

convert to gaussian significance (s):

$$1 - p = \int_{-\infty}^{\infty} N(x; 0, 1) \mathrm{dx}$$

esσ

large statistics

$$p = \int_{S+B}^{+\infty} f(x, B, \sqrt{B}) dx \quad \frac{S}{\sqrt{B}}$$

$$p = \int_{-\infty}^{B} f(x, S + B, \sqrt{S + B}) dx \frac{S}{\sqrt{S + B}}$$

Higgs self-coupling measurement at LHC

for a low mass Higgs: M(H) < 140 GeV

Phys.Rev. D68 (2003) 033001

 $p + p \rightarrow HH \rightarrow bbbb$

QCD 4b background solid: dashed: SM signal dotted and dotted-dashed: signal with different Higgs self-coupling

two orders overwhelmed by QCD 4b background!