Higgs production in association with top quarks with ILD at 500 GeV and 1 TeV

Tomohiko Tanabe (Tokyo), Tony Price (Birmingham), Ryo Yonamine (KEK)

> May 29, 2013 ECFA LC2013 @ DESY

Outline

Top Yukawa coupling

- What is the required precision?
- How well can we measure it at ILC?

[See also talk by Philipp Roloff]

Top Yukawa Coupling

- Higgs boson discovered!
- Top Yukawa coupling is large
 - What role does the top quark play in EWSB?
- Need to better understand the relation between coupling and mass
 - top mass measurement at top pair threshold
 - coupling measurement in direct ttH production

$$y_t = m_t \frac{\sqrt{2}}{v} \approx \frac{m_t}{174.10}$$

Indirect vs. Direct

Indirect measurement

High statistics

- → Need higher order loop corrections
- Sensitive to new physics in the loop
 - → cannot separate the tree-level coupling anomaly

Direct measurement ✓ Model-independent

- ✓ Sensitive to **tree-level** anomaly
- Together with indirect measurement, disentangle new physics in the loop

→ Require energy to directly produce tth, large jet multiplicity

New Physics Effects

- Many NP models predict extended Higgs sector

 Coupling deviates from the SM-prediction
 Gives us a clue on the required precision
- If the Higgs boson is a CP-mixed state, ttH and ttΦ are produced via tree-level couplings

- as opposed to loop-induced in Higgs-strahlung

→ Motivates precise measurement of top Yukawa coupling

Outline

Top Yukawa coupling

• What is the required precision?

How well can we measure it at ILC?

If LHC doesn't see any other new particles

EW precision data	Gupta, Rzehak, Wells, arXiv:1206.3560
+ LHC 300 fb ⁻¹ (Heavy Higgs,	Rzehak, Moriond EW 2013
VBF WW/HH)	Rzehak, ECFA LC2013

Maximum Deviation	ΔhVV	$\Delta h \overline{t} t$	$\Delta h \overline{b} b$
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of %	tens of %
Minimal Supersymmetry	< 1%	3%	10%, 100%
		aneta > no superp	20 all other partners cases

\rightarrow Required precision in y_t is few % to few tens of %

Outline

Top Yukawa coupling

• What is the required precision?

How well can we measure it at ILC?

ILD detector

Vertex Detector: pixel detectors & low material budget Tracker: low material budget Calorimeters: high granularity sensors

Sensor Size	ILD	ATLAS	Ratio
Vertex	5×5 mm ²	400×50 mm ²	x800
Tracker	1×6 mm ²	13 mm ²	x2.2
ECAL	5×5 mm² (Si)	39×39 mm ²	x61

Particle Flow Algorithm

Separate calorimeter clusters at particle level

- → use *best* energy measurement for *each* particle.
- → offers unprecedented jet energy resolution
 Charged Tracks → Tracker
 Photons → ECAL

Neutral Hadrons \rightarrow HCAL

Increased realism in simulation

Simulation framework has been updated in the context of the Detailed Baseline Design report, e.g.

- Beam parameters
- Beam-induced backgrounds
- Detector model
- Reconstruction algorithms
 - Tracking
 - Particle Flow
 - Flavor Tag

ILD Material Budget Includes support structure, cabling, etc → Geant4-based full simulation

Major Backgrounds

Irreducible for \overline{Z} , $g^* \rightarrow bb$ Key: mass reconstruction

Reducible but large cross section Key: b-jet tagging, event shape

Cross Sections

tt bound-state effects

tt bound-state effects **enhances** (~2x) the cross section near production threshold Makes top Yukawa measurement at 500 GeV feasible!

Analysis Flow

- Start with standard reconstruction samples for DBD
- Removal of $\gamma\gamma \rightarrow$ hadrons pileup background
- Isolated lepton finding
 - split sample into bqqbqqbb / bqqbqqlnu
- Event selection based on
 - event shapes, b-tagging, reconstructed mass, etc
- Results cross-checked by two analyses:
 - Cut-based
 - TMVA-based with Boosted Decision Trees

Details can be found in **LC-REP-2013-004** http://www-flc.desy.de/lcnotes/

* Jet combination with most consistent candidate mass is selected.

> *tt* → *bqqbqqbb* sample (with lepton veto) @ 1 TeV ttH 8 jet, ttH other, ttZ, ttbb, tt

Cut Analysis [√s = 1 TeV]

	ttH 8J	ttZ	ttg*	tt
No cuts	650	5300	1400	300000
Pre-selection	650	3200	930	190000
Event Shapes	550	1900	470	27000
b-tagging	280	230	210	680
Mass	260	210	180	530

	ttH 6J+L	ttZ	ttg*	tt
No cuts	630	5300	1400	300000
Pre-selection	360	1600	440	100000
Event Shapes	150	280	86	1800
b-tagging	100	58	55	130
Mass	95	46	49	110

Need multivariate analysis to fully exploit mass information

Multivariate Analysis

TMVA-based analysis with BDT improves significance.

For DBD: assuming equal split between two polarizations.

- 0.5 ab⁻¹ of P(e⁻, e⁺)=(-0.8, +0.2)
- 0.5 ab⁻¹ of P(e[−], e⁺)=(+0.8, −0.2)

Summary of Results

Detector Model	ILD										
CM Energy	500 GeV	1 TeV									
Higgs mass		125 GeV									
Beam polarization	(-0.8, +0.3)	(-0.8, +0.2)	(-0.8, +0.2), (+0.8, -0.2)								
Integrated Luminosity	1 ab ⁻¹	1 ab⁻¹	0.5 ab ⁻¹ , 0.5 ab ⁻¹								
$\Delta y_t / y_t$	11%	3.9%	4.3%								
	Scaled from m _H =120 GeV [Preliminary]	/	DBD benchmark configuration								

~800 GeV maximum cross section for ttH (need to consider also behavior of background) Optimization of machine running scenario is needed.

Systematic Uncertainties

So far our results give the statistical precision only. For **O(1)%** measurements, need to address **systematic uncertainties** such as:

- BR(H→bb)
- Background normalization
- Jet energy scale
- Luminosity
- Polatization
- b tagging efficiency
- Lepton ID / isolation

→ These are the next steps...

~2%
TBD
TBD, O(0.1)%
~0.2%
TBD, O(1)%
TBD

Conclusions

- Interesting physics with top Yukawa coupling
 - relation between coupling and mass
 - new physics from direct and indirect measurements
- Maximum possible deviation of top Yukawa coupling if LHC doesn't see new particles is a few % to few tens of % [Gupta, Rzehak, Wells '12]
- Expected precision of top Yukawa coupling with the latest ILC simulations (2012-2013) have been evaluated
 - $-\sqrt{s}=500 \text{ GeV}, \quad L=1 \text{ ab}^{-1}, \quad \Delta y_t/y_t \sim 11\% \text{ [preliminary]}$
 - $-\sqrt{s=1 \text{ TeV}}$, L=1 ab⁻¹, $\Delta y_t/y_t \sim 4\%$

Extra Slides

Figure 18: Reconstructed masses for the Higgs boson candidate after applying a cut on the multivariate classifier for the semileptonic (left) and hadronic (right) decay modes.

Sensitivity to top Yukawa

Estimate effect of non-contributing diagrams. Dependence of cross section w.r.t. scaling of top Yukawa coupling \rightarrow slope at SM value gives nominal sensitivity

$$\frac{\Delta y_t}{y_t} = (\dots) \frac{\Delta \sigma}{\sigma} \qquad \left(\frac{\sigma/y_t}{|d\sigma/dy_t|} \right)_{y_t = y_t(SM)} = 0.52$$

Signal mode

- Goal is to evaluate the precision of the top Yukawa coupling at $\sqrt{s} = 1 \text{ TeV}$
 - evaluate the precision of cross section measurement
- Higgs boson mass set to 125 GeV in light of LHC data.
 - BR(H→bb) = 57.8%
- There are three decay modes depending on the W decay:
 - ttH → 4 jet + 2 lepton mode: BR(tt → blvblv) = 11% -- not analyzed
 - ttH → 6 jet + lepton mode: BR(tt → bqqblv) = 45% for l=e, μ , τ (29% for l=e, μ)
 - ttH → 8 jet mode: BR(tt → bqqbqq) = 44%

Data Samples

id	process	pol	xsec	ngen	weight
106427	Pttbb-all-all	eL.pR	3.429300	21000	0.047357
106428	Pttbb-all-all	eR.pL	1.517400	10600	0.041514
106429	Pttz-all-all	eL.pR	14.020600	13829	0.294018
106430	Pttz-all-all	eR.pL	4.367100	13200	0.095944
106451	Ptth-6q-hbb	eL.pR	1.552750	17620	0.025556
106452	Ptth-6q-hbb	eR.pL	0.698000	7361	0.027499
106453	Ptth-6q-hnonbb	eL.pR	1.133670	7749	0.042427
106454	Ptth-6q-hnonbb	eR.pL	0.509620	3787	0.039026
106455	Ptth-ln4q-hbb	eL.pR	1.495560	17603	0.024639
106456	Ptth-ln4q-hbb	eR.pL	0.672430	7311	0.026673
106457	Ptth-ln4q-hnonbb	eL.pR	1.091920	6684	0.047375
106458	Ptth-ln4q-hnonbb	eR.pL	0.490940	3358	0.042398
106459	Ptth-212nbb-hbb	eL.pR	0.360100	800	0.130536
106460	Ptth-212nbb-hbb	eR.pL	0.161940	400	0.117407
106461	Ptth-212nbb-hnonbb	eL.pR	0.262910	600	0.127073
106462	Ptth-212nbb-hnonbb	eR.pL	0.118230	400	0.085717
35786	P6f_yyveev	eL.pL	0.753694	10000	0.015828
35787	P6f_yyveev	eL.pR	14.262567	14263	0.289991
35788	P6f_yyveev	eR.pL	3.191048	10000	0.092540
35789	P6f_yyveev	eR.pR	0.759213	9999	0.015945
35790	P6f_yyvelv	eL.pL	1.434391	10000	0.030122
35791	P6f_yyvelv	eL.pR	22.876428	22873	0.290043
35792	P6f_yyvelv	eR.pL	6.272190	10000	0.181894
35794	P6f_yyveyx	eL.pL	4.121621	9999	0.086563
35795	P6f_yyveyx	eL.pR	67.534318	400000	0.048962
35796	P6f_yyveyx	eR.pL	18.645337	40000	0.135179
35799	P6f_yyvLev	eL.pR	22.875149	22871	0.290053
35800	P6f_yyvlev	ек.рг	6.264408	9998	0.181704
35801	P6f_yyvLev	eR.pR	1.427611	10000	0.029980
35803	P6f_yyvllv	eL.pR	41.275472	41270	0.290038
35804	P6f_yyvllv	eK.pL	12.598244	12597	0.290029
35807	P6f_yyvLyx	eL.pK	115.979040	698099	0.048179
35808	P6f_yyvLyx	ek.pL	37.306473	60000	0.180315
35811	P6f_yyxyev	ег.рк	68.502191	400000	0.049664
35812	P6f_yyxyev	eK.pL	18.659270	40000	0.135280
35813	P6f_yyxyev	ек.рк	4.163067	10000	0.087424
35815	P6t_yyxyLV	eL.pk	116.426720	699144	0.048293
22010		ek.pL	57.521082	60000	0.180385
32818	P6†_yyuyyu	ег.рк	84.595962	500000	0.049066
35820	P6†_yyuyyu	eR.pL	27.500471	40000	0.199378
32823	Рот_ууиуус	ег.рк	84.581//4	498800	0.049175
33824 25827	Рот_уушуус	ек.pL	27.508546	40000	0.199437
22021	Рот_уусууи	ег.рк	84.426452	000000	0.048967
32828	Рот_уусууи	ек.pL	27.483992	40000	0.199259
35831	Р6†_уусуус	eL.pK	84.975908	500000	0.049286
35832	Рбт_уусуус	ек.р∟	27.584594	40000	0.199988

Signal samples

Weights are calculated assuming data samples of:

- 0.5 ab⁻¹ for (-0.8, +0.2)
- 0.5 ab⁻¹ for (+0.8, -0.2)

which are summed.

All weights << 1: → We have sufficient statistics.

Removal of $\gamma\gamma \rightarrow$ hadrons

Average 4.1 events $\gamma\gamma \rightarrow$ hadrons are overlaid in all simulations.

 \rightarrow Degrade the mass resolution due to extra energy in the forward region.

Black (dotted):

Durham (sample w/o $\gamma\gamma \rightarrow$ hadrons) **Red**:

Durham (sample w/ γγ→hadrons) Blue:

Durham (sample w/ $\gamma\gamma \rightarrow$ hadrons) after removing cos θ >0.94 particles

 \rightarrow Mass resolution can be recovered.

(PFOs are mostly central for ttH process.)

kt algorithm with R=1.2 is used for final analysis

	Efficiency	Composition								
	Elliciency	W → e,µ	W→τ→e,µ	Other e,µ	Fake e,µ					
Electrons	84.0%	94.2%	2.9%	1.6%	2.3%					
Muons	90.5%	96.3%	2.4%	1.2%	0.7%					

Performance of isolated lepton finder for tth 6 jets + 1 lepton sample

Variables (1)

T. Tanabe (tomohiko@icepp.s.u-tokyo.ac.jp)

Variables (2)

T. Tanabe (tomohiko@icepp.s.u-tokyo.ac.jp)

Variables (3)

Variables (4)

ttH 8 jet ttH other ttZ ttbb tt

T. Tanabe (tomohiko@icepp.s.u-tokyo.ac.jp)

Variables (5)

Jet combination is based on chi-squared minimization method. Jets with 4 lowest b-tags selected for W candidates.

Cut-based Analysis

	$t\bar{t}h$ (4J)	$t\overline{t}h$ (6J)	$t\bar{t}h$ (8J)	$t\bar{t}h\ (h \not\rightarrow b\bar{b})$	$t\overline{t}Z$	$t\overline{t}b\overline{b}$	$t\overline{t}$	Sig.
No cuts	151.39	628.73	652.77	1046.10	5332.52	1434.53	306238.26	1.16
$N_{\rm iso} = 0$	20.87	261.17	647.92	556.71	3226.14	932.49	188911.38	1.47
$E_{\rm vis} > 650 {\rm ~GeV}$	9.83	220.97	636.16	497.45	2743.54	849.34	157389.56	1.58
Thrust < 0.87	8.09	187.75	577.60	440.06	2219.68	540.88	46916.14	2.56
$Y_{78} > 0.0001$	3.65	143.55	549.52	415.51	1926.58	474.59	27472.09	3.12
$btag_4 > 0.38$	1.89	80.98	275.02	17.55	230.04	209.60	680.62	7.11
$ \cos \theta_{\rm hel} < 0.9$	1.63	73.80	263.71	16.48	215.91	189.19	584.92	7.19
$m_t > 120 \text{ GeV}$	1.50	68.09	255.38	15.58	207.81	178.53	530.93	7.20

Cut-based analysis result (8 jet mode only): Statistical significance = 7.2 sigma

Correlation Matrices

Correlation Matrix (background)

										Li	nea	r co	rrel	atio	n c	oeff	icie	nts	in %	100
abs(hel_8j)	6	-15	-17	-4	-3		1	-6	-11	-4	-10	4	-1	-23	-22	-17	-14	100		100
og10(y78_8j)	-33	6	61	7	4	6	9	9	20	15	21	11	-18	43	57	79	100	14		80
og10(y67_8j)	-32	13	58	10	7	7	8	11	23	16	25	13	-21	49	69	100	79	·17		00
og10(y56_8j)	-29	18	51	13	10	6	6	14	25	17	28	15	-28	64	100	69	57	-22		60
og10(y45_8j)	-35	7	38	15	12	7	6	13	21	15	24	14	-27	100	64	49	43	-23		
mchi2_8j	-2	-20	-27	-14	-10	-2	-1	-3	-7	-9	-12	-22	100	-27	-28	-21	-18	-1		40
mh_8j	-2	23	22	8	6	1		4	8	7	11	100	-22	14	15	13	11	4		
mt2_8j	-4	38	29	1	1			10	17	34	100	11	-12	24	28	25	21	-10		20
mw2_8j	-2	21	22	2	2	2	2	5	11	100	34	7	-9	15	17	16	15	-4		^
mt1_8j	-4	37	30	1	1			35	100	11	17	8	-7	21	25	23	20	-11		U
mw1_8j		23	21	10	9	2		100	35	5	10	4	-3	13	14	11	9	-6		-20
b4_8j	-4	-3	12	15	22	64	100			2			-1	6	6	8	9	1		20
b3_8j	-3	-3	11	24	37	100	64	2		2		1	-2	7	6	7	6		_	-40
b2_8j	-1	4	15	58	100	37	22	9	1	2	1	6	-10	12	10	7	4	-3		
b1_8j		3	20	100	58	24	15	10	1	2	1	8	-14	15	13	10	7	-4	_	-60
npfo	-10	47	100	20	15	11	12	21	30	22	29	22	-27	38	51	58	61	-17		
evis	33	100	47	3	4	-3	-3	23	37	21	38	23	-20	7	18	13	6	-15		-80
thru	100	33	-10		-1	-3	-4		-4	-2	-4	-2	-2	-35	-29	-32	-33	6		100
	$\frac{1}{100}$																			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																				

#### **Correlation Matrix (signal)**

Linear correlation coefficients in %																				
abs(hel_8j)	5	-1	-8	-3	-3	-5	-5	-4	-4	-3	-2	5	-4	-18	-21	-16	-13	100		100
og10(y78_8j)	-23	-5	28	3	5	7	10	6	14	8	14		4	9	28	57	100	-13		80
og10(y67_8j)	-27	-8	18	4	6	9	13	8	15	9	14		3	12	45	100	57	-16		00
og10(y56_8j)	-29	-11	10	5	6	10	12	7	10	9	10			24	100	45	28	-21	_	60
og10(y45_8j)	-29	-15	4	2	2	2		4	5	5	6	4		100	24	12	9	-18		
mchi2_8j	-10	29	22		-1	-3	-1	33	47	32	47	16	100			3	4	-4	_	40
mh_8j	-8	11	15					-2		-3		100	16	4				5		
mt2_8j	-12	21	18			1	2		2	37	100		47	6	10	14	14	-2		20
mw2_8j	-7	18	14	2	3	5	7	1		100	37	-3	32	5	9	9	8	-3		•
mt1_8j	-12	21	18			-1		36	100		2		47	5	10	15	14	-4		U
mw1_8j	-5	18	12			2	2	100	36	1		-2	33	4	7	8	6	-4		-20
b4_8j	-3	7	8	17	33	57	100	2		7	2		-1		12	13	10	-5		20
b3_8j	-2	7	4	31	58	100	57	2	-1	5	1		-3	2	10	9	7	-5		-40
b2_8j	-2	4	2	51	100	58	33			3			-1	2	6	6	5	-3		
b1_8j		1		100	51	31	17			2				2	5	4	3	-3		-60
npfo	-8	24	100		2	4	8	12	18	14	18	15	22	4	10	18	28	-8		
evis	29	100	24	1	4	7	7	18	21	18	21	11	29	-15	-11	-8	-5	-1		-80
thru	100	29	-8		-2	-2	-3	-5	-12	-7	-12	-8	-10	-29	-29	-27	-23	5		100
	th	-, ev	in nr	rb1	h ha	> <b>b</b> 3		i An	w.Dr	++m	<i>"</i> .	m	ь <i>Г</i> р	~lo	~ <i>l</i> 0	n la	- 10	,₽b	0/1	-100

- Hadronic ("8 jet") analysis:
  - Cut-based analysis: 7.2 sigma
  - TMVA-based analysis: 9.6 sigma
- Semileptonic ("6 jet") analysis:
  - Cut-based analysis: 5.4 sigma
  - TMVA-based analysis: 7.6 sigma
- Combined: 12.2 sigma, 4.3% precision in Δy_t/y_t (TMVA)

- for 0.5  $ab^{-1}$  (-0.8, +0.2) and 0.5  $ab^{-1}$  (+0.8, -0.2)

### 6 jets + lepton @ 500 GeV

						-			
	tth_4j	tth_6j	tth_8j	ttbb	ttz	bb4f			
No cut	58.4	235	246	1059	1905	909355			
Precut	27.8	128	12.1	311	551	268090			
BDT	2.4	40.6	1.3	24.8	31.1	48.9			
Input Var	iables /is		Signifi	cance	3.63				
y45, y78, mh, mw1	, mt1,		Pu	rity	29.7%				
btag_j1,   btag_j3,	btag_j2, btag_j4,		Efficiency 8.2 (6J only) (17.						
CUSHELL									

# 8 jets @ 500 GeV

				-		
	tth_4j	tth_6j	tth_8j	ttbb	ttz	bb4f
No cut	58.4	235	246	1059	1905	909355
Precut	10.8	100	233	713	1191	610823
BDT	0.4	19.5	68.9	39.2	64.3	93.6
Input Variables thrust, evis y45, y78 mh, mw1, mt1, mw2, mt2 btag_j1, btag_j2, btag_j3, btag_j4,			Significance		5.25	
			Purity		31.6 %	
			Efficiency (8J only)		<b>16.4%</b> (28.0%)	