Buckets of Tops

Michihisa Takeuchi (King's College London)

arxiv:1302.6238 M. R. Buckley, T. Plehn, M. T.

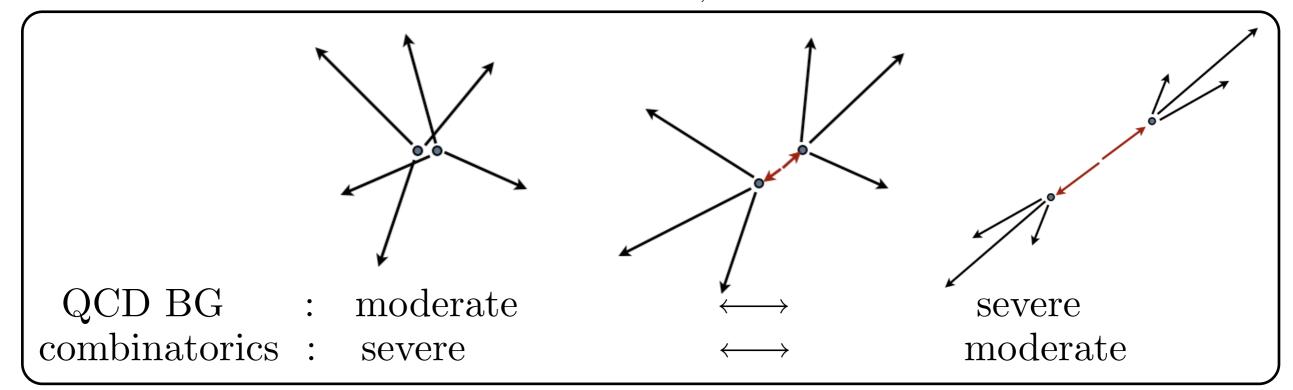
Top at LHC

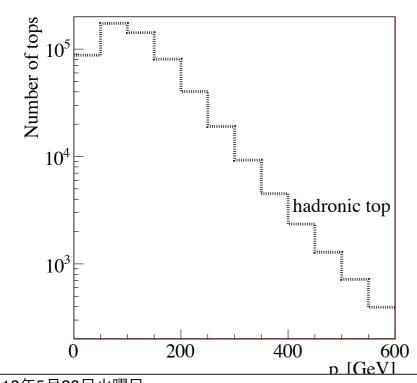
• top: closest to new physics

fine tuning problem \to top partner $\delta m_h^2 \sim (t)^{-1/2} (-\frac{3}{4\pi}y_t^2\Lambda_{\rm SM}^2)$

- $\tilde{t}\tilde{t} \to t\bar{t}\chi\chi$: stop search
- $t\bar{t}H$: largest yukawa coupling to higgs to be measured
- $t\bar{t}$: main background for new physics search
- hadronic top:

advantage : momentum reconstruction

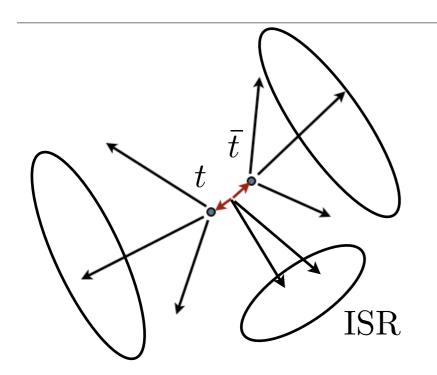

disadvantage: QCD and combinatorics


 \rightarrow boosted tops

ISR makes the situation worse

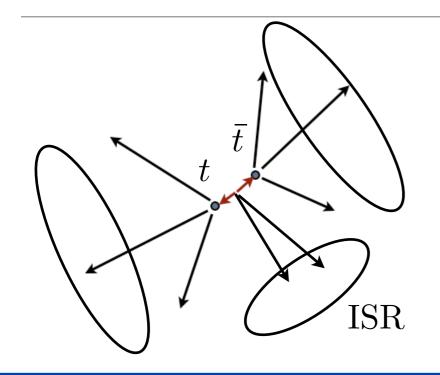
Moderately boosted tops

• events look different depending on $p_{T,t}$

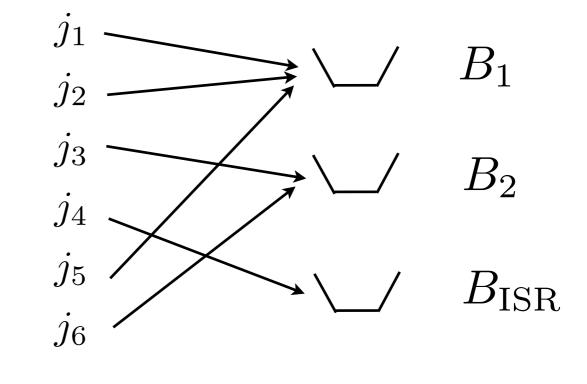


moderate boost help to solve combinatorics HEPTopTager: down to $p_T \sim 200 \text{ GeV}$

How can we tag $p_T \sim 100 \text{ GeV}$? stop search, $t\bar{t}H$ with 25fb^{-1} keeping signal important


Buckets of tops

start with standard jets (C/A R = 0.5)


Aim: find jets corresponding to 2 tops

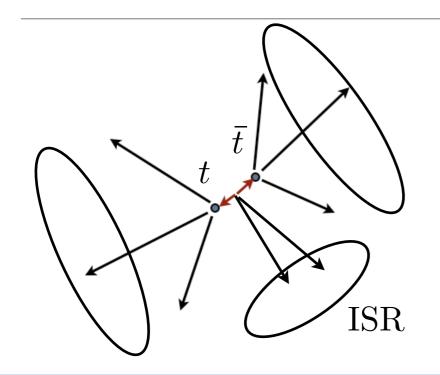
Buckets of tops

start with standard jets (C/A R = 0.5)

Aim: find jets corresponding to 2 tops

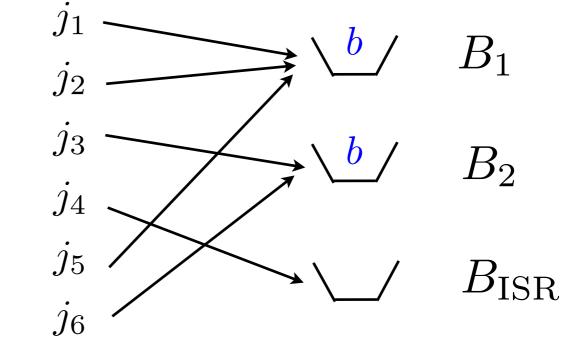
scan all permutation, select the grouping minimizing

$$\Delta^2 = \omega \Delta_{B_1}^2 + \Delta_{B_2}^2 \quad (\omega = 100)$$


$$\Delta_{B_i} = |m_{B_i} - m_t|$$

$$m_{B_i}^2 = \left(\sum_{j \in B_i} p_j\right)^2$$

One event provides $\{B_1, B_2, B_{\rm ISR}\}$


always 2 top tags

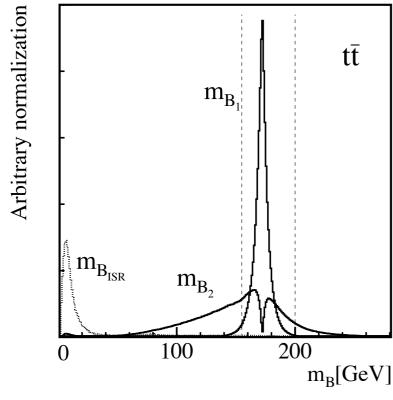
Buckets of tops

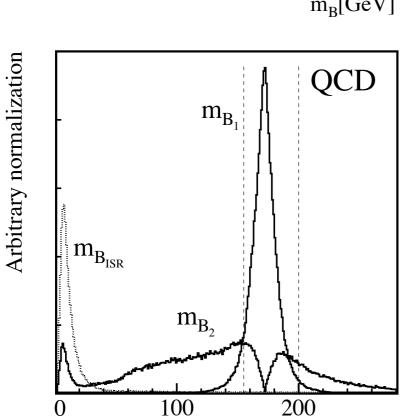
start with standard jets (C/A R = 0.5)
with 2 b-jets

Aim: find jets corresponding to 2 tops

scan all permutation, select the grouping minimizing

$$\Delta^2 = \omega \Delta_{B_1}^2 + \Delta_{B_2}^2 \quad (\omega = 100)$$


$$\Delta_{B_i} = |m_{B_i} - m_t|$$


$$m_{B_i}^2 = \left(\sum_{j \in B_i} p_j\right)^2$$

One event provides $\{B_1, B_2, B_{\rm ISR}\}$

always 2 top tags

Bucket mass, W condition

• top mass window

$$155 \text{ GeV} < m_{B_{1,2}} < 200 \text{ GeV}$$

 \bullet W mass window

regard B_i contains W if 2 jets in a bucket satisfy

$$\left| \frac{m_{kl}}{m_{B_i}} - \frac{m_W}{m_t} \right| < 0.15$$

Bucket mass, W condition

oritharian market $m_{\rm B_{ISR}}$ $m_{\rm B_2}$ $m_{\rm B$

100

200

• top mass window

$$155 \text{ GeV} < m_{B_{1,2}} < 200 \text{ GeV}$$

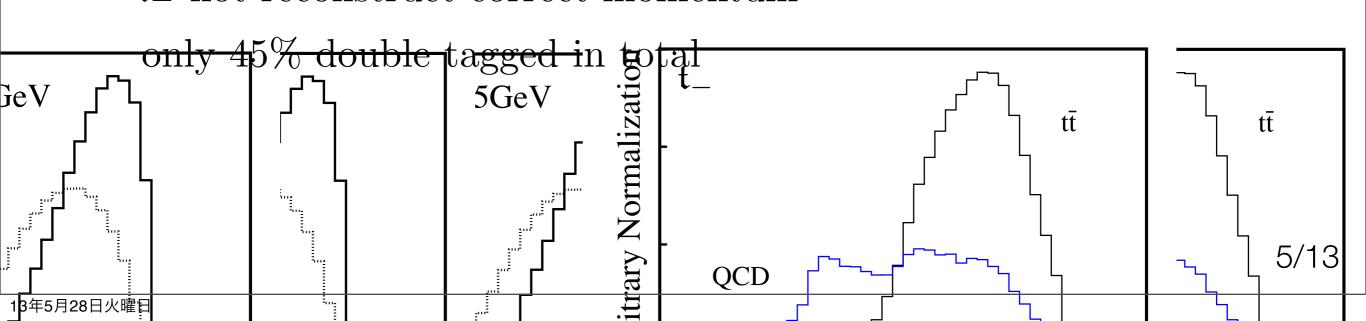
• W mass window regard B_i contains W if 2 jets in a bucket satisfy

$$\left| \frac{m_{kl}}{m_{B_i}} - \frac{m_W}{m_t} \right| < 0.15$$

 \rightarrow 4 categories

$$(\mathfrak{t}_w, \mathfrak{t}_w) : B_1 \ni W, B_2 \ni W$$
 $(\mathfrak{t}_w, \mathfrak{t}_-) : B_1 \ni W, B_2 \not\ni W$
 $(\mathfrak{t}_-, \mathfrak{t}_w) : B_1 \not\ni W, B_2 \ni W$
 $(\mathfrak{t}_-, \mathfrak{t}_-) : B_1 \not\ni W, B_2 \not\ni W$

Efficiency & Momentum reconstruction

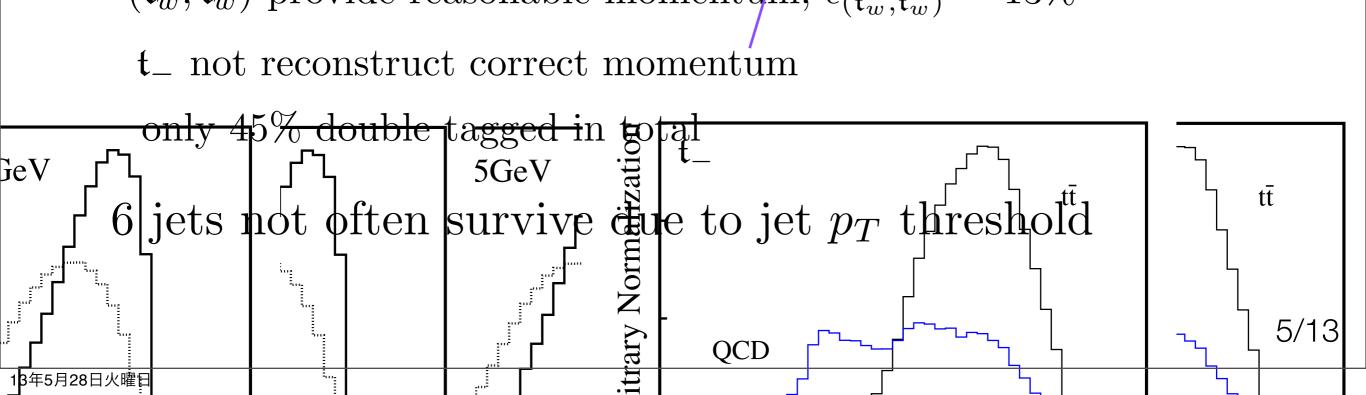

 $R_i < 0.5$: good reconstruction

$$R_i = \Delta R(B_i, p_t^{\text{MCtruth}})$$

	$t_h \bar{t}_h + \text{jets [fb]}$	R_1, R	$C_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, 2b-tag	21590			16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	1	(68.9%)	126.2	21.8
$\overline{(\mathfrak{t}_w,\mathfrak{t})}$	2517		23.4%	727.1	3.5
$(\mathfrak{t},\mathfrak{t}_w)$	1782	/	21.8%	596.5	3.0
$(\mathfrak{t},\mathfrak{t})$	2767		9.0%	2002	1.4

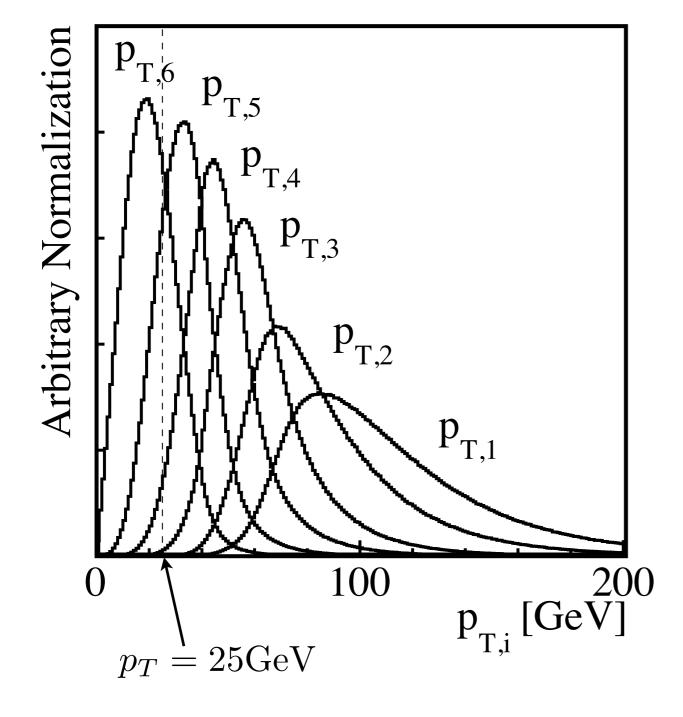
 $(\mathfrak{t}_w,\mathfrak{t}_w)$ provide reasonable momentum, $\epsilon_{(\mathfrak{t}_w,\mathfrak{t}_w)} \sim 13\%$

t_− not reconstruct correct momentum

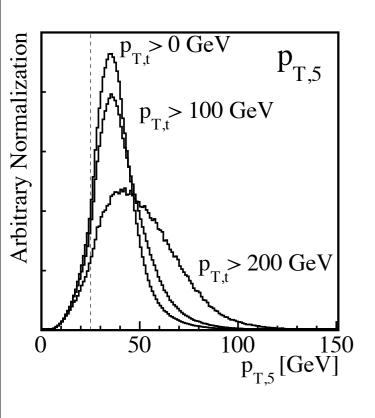

Efficiency & Momentum reconstruction

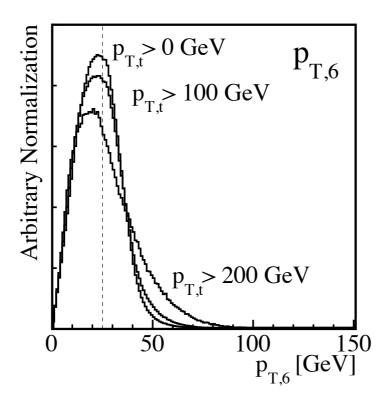
 $R_i < 0.5$: good reconstruction

$$R_i = \Delta R(B_i, p_t^{\text{MCtruth}})$$


	$t_h \bar{t}_h + \text{jets [fb]}$	R_1, R	$C_2 < 0.5$	QCD [fb]	$S/B_{\rm QCD}$
5 jets, 2b-tag	21590			16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w)$	2750	1	(68.9%)	126.2	21.8
$\overline{(\mathfrak{t}_w,\mathfrak{t})}$	2517		23.4%	727.1	3.5
$(\mathfrak{t},\mathfrak{t}_w)$	1782	/	21.8%	596.5	3.0
$(\mathfrak{t},\mathfrak{t})$	2767		9.0%	2002	1.4

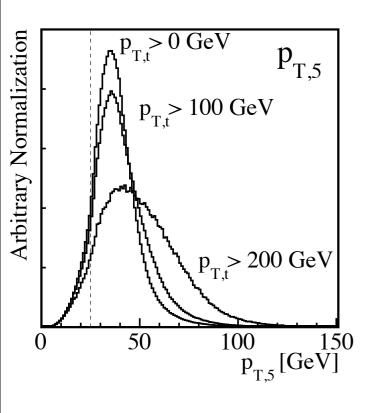
 $(\mathfrak{t}_w,\mathfrak{t}_w)$ provide reasonable momentum, $\epsilon_{(\mathfrak{t}_w,\mathfrak{t}_w)} \sim 13\%$


Jet pT threshold


6 partons from top pair decays

 $p_{T,j} > 25 \text{ GeV kills 6th jet}$ $98\% \text{ of } j_6 \text{ from } W$

Jet pT threshold


 $p_{T,j} > 25 \text{ GeV kills 6th jet}$

98% of j_6 from W

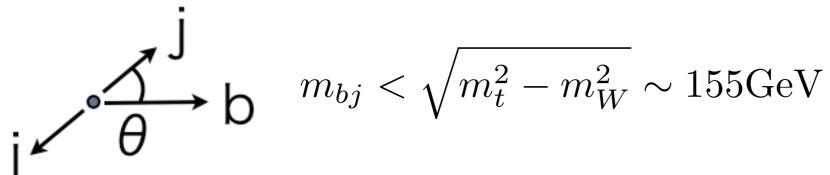
distributions: weak top p_T dependence

		$t_h \overline{t_h} + \text{jets [pb]}$	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$	
lepton veto		104.1	33.4%	44.9%	
$n_j \ge 5$		70.5	42.5%	46.4%	
$n_j \ge 6$		36.7	54.7%	38.0%	
$n_j \ge 5$	$p_{T,t_2} > 100 \text{ GeV}$	32.7	43.6%	46.2%	
	$p_{T,t_2} > 200 \text{ GeV}$	6.7	47.4%	44.7%	

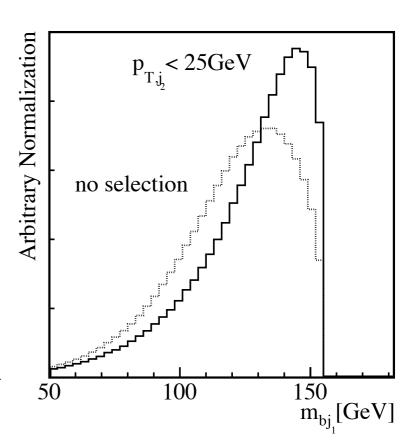
Jet pT threshold

 $p_{T,j} > 25 \text{ GeV kills 6th jet}$

98% of j_6 from W

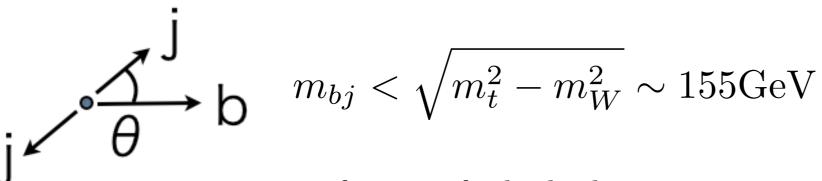

distributions: weak top p_T dependence

What can we do with 5 jets?

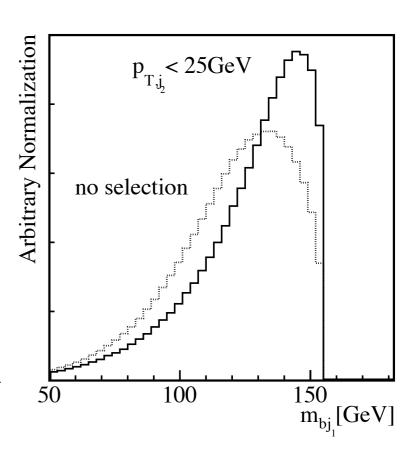

		$t_h \overline{t}_h + \text{jets [pb]}$	$p_{T,6} > 25 \text{ GeV}$	$p_{T,5} > 25 \text{ GeV} > p_{T,6}$	
lepton veto		104.1	33.4%	44.9%	
$n_j \ge 5$		70.5	42.5%	46.4%	
$n_j \ge 6$		36.7	54.7%	38.0%	
\sim 5	$p_{T,t_2} > 100 \text{ GeV}$	32.7	43.6%	46.2%	
$n_j \geq 5$	$p_{T,t_2} > 100 \text{ GeV}$ $p_{T,t_2} > 200 \text{ GeV}$	6.7	47.4%	44.7%	

bj-buckets

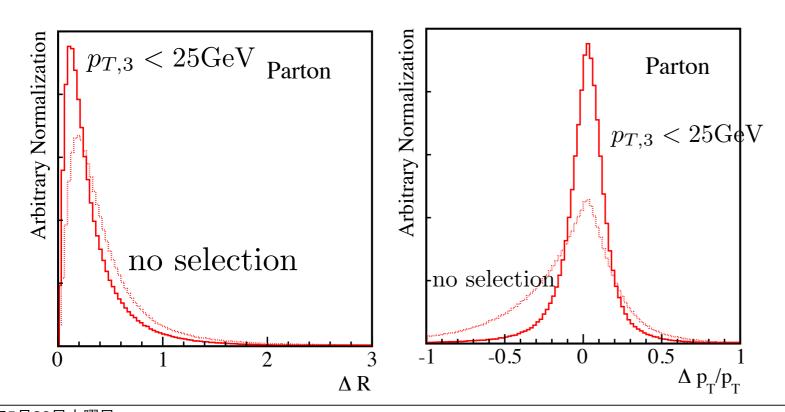
• m_{bj} -peak from top decay kinematics



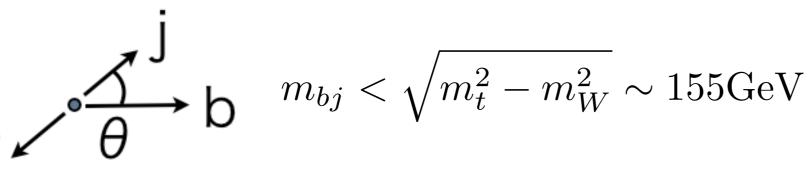
unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$



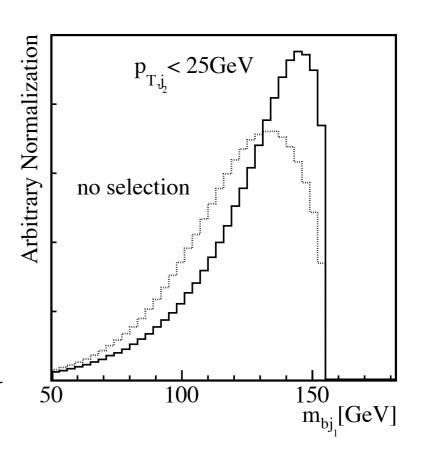
bj-buckets


• m_{bj} -peak from top decay kinematics

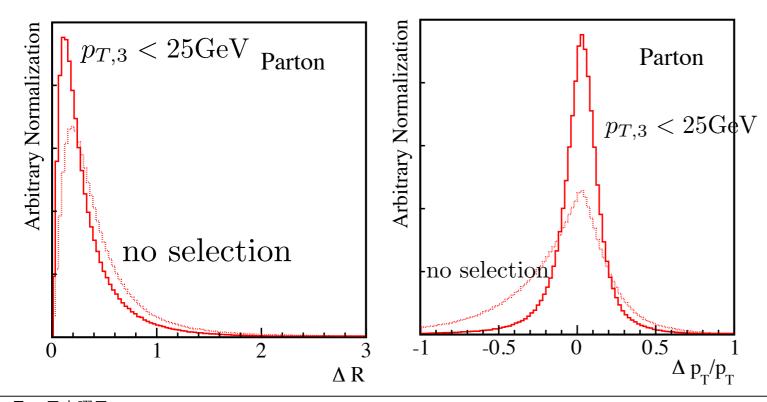
unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$



acceptable momentum reconstruction



bj-buckets


• m_{bj} -peak from top decay kinematics

unique feature of 3 body decay more pronounced peak with $p_{T,3} < 25 \text{GeV}$

acceptable momentum reconstruction

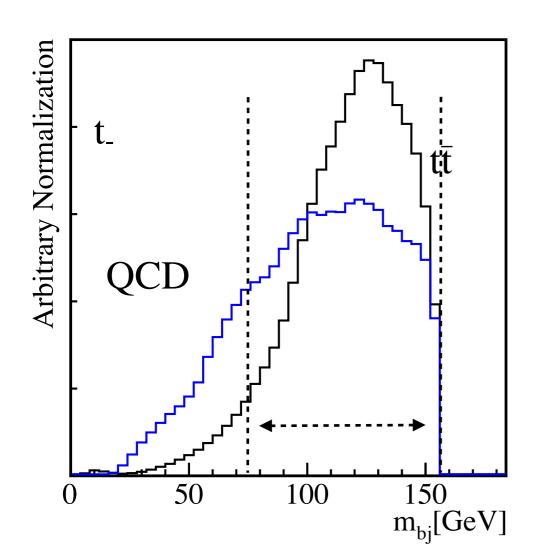
new metric:

$$\Delta_B^{bj} = |m_B - 145 \text{GeV}|$$

if $m_B > 155 \text{GeV}$, thrown away

7/13

```
(\mathfrak{t}_w,\mathfrak{t}_w): keep them
(\mathfrak{t}_w,\mathfrak{t}_-): \text{reconstruct }\mathfrak{t}_- \text{ with } \Delta_B^{bj}
(\mathfrak{t}_-,\mathfrak{t}_-): reconstruct \mathfrak{t}_- to minimize \Delta_{B_1}^{bj} + \Delta_{B_2}^{bj}
                                                                                  keep
j_3
                                                    B_2 \mathfrak{t}_w
                                                                              keep
j_4
j_5
```


```
(\mathfrak{t}_w,\mathfrak{t}_w): keep them
(\mathfrak{t}_w,\mathfrak{t}_-): \text{reconstruct }\mathfrak{t}_- \text{ with } \Delta_B^{bj}
(\mathfrak{t}_-,\mathfrak{t}_-): reconstruct \mathfrak{t}_- to minimize \Delta_{B_1}^{bj} + \Delta_{B_2}^{bj}
                                              B_1 \quad \mathfrak{t}_w \quad \text{keep}
j_3
                                              B_2 \mathfrak{t}_- recompute
j_4
j_5
                                               B_{\rm ISR}
                       \Delta_{B_i} = |m_{B_i} - m_t| \Delta_B^{bj} = |m_B - 145 \text{GeV}|
```

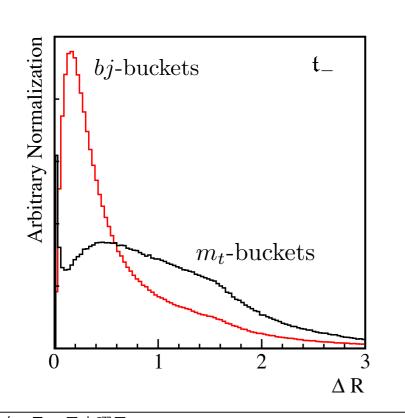
```
(\mathfrak{t}_w,\mathfrak{t}_w): keep them
(\mathfrak{t}_w,\mathfrak{t}_-): \text{reconstruct }\mathfrak{t}_- \text{ with } \Delta_B^{bj}
(\mathfrak{t}_-,\mathfrak{t}_-): reconstruct \mathfrak{t}_- to minimize \Delta_{B_1}^{bj} + \Delta_{B_2}^{bj}
                                       B_1 \mathfrak{t}_- recompute
                                           B_2 \mathfrak{t}_- recompute
j_4
                                           B_{\rm ISR}
                     \Delta_{B_i} = |m_{B_i} - m_t| \Delta_B^{bj} = |m_B - 145 \text{GeV}|
```

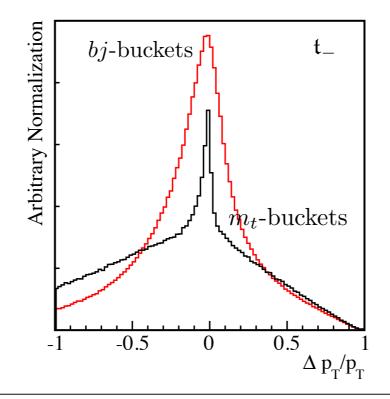
```
(\mathfrak{t}_w,\mathfrak{t}_w): keep them
```

 $(\mathfrak{t}_w,\mathfrak{t}_-): \text{reconstruct }\mathfrak{t}_- \text{ with } \Delta_B^{bj}$

 $(\mathfrak{t}_{-},\mathfrak{t}_{-})$: reconstruct \mathfrak{t}_{-} to minimize $\Delta_{B_1}^{bj} + \Delta_{B_2}^{bj}$

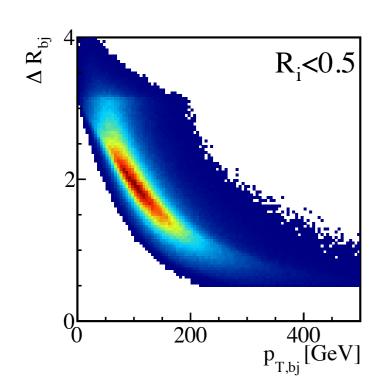
$$m_{\mathfrak{t}_{-}}(=m_{bj})$$
 distribution

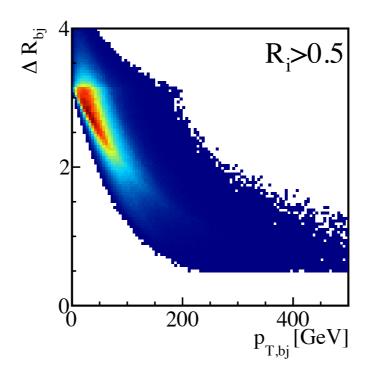

accept \mathfrak{t}_{-} as a top


$$75 \text{ GeV} < m_{bj} < 155 \text{ GeV}$$

Efficiency and momentum reconstruction

		$t_h \bar{t}_h + \text{jets [fb]}$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{ m QCD}$
	5 jets, 2b-tag	21590		16072	1.4
unchanged —	$ ightarrow (\mathfrak{t}_w, \mathfrak{t}_w)$	2750	68.9%	126.2	21.8
	$(\mathfrak{t}_w,\mathfrak{t})$	7787	47.3%	2259	3.4
	$(\mathfrak{t},\mathfrak{t}_w)$	1093	27.3%	190.5	5.7
	$(\mathfrak{t},\mathfrak{t})$	4887	28.5%	4077	1.2
				•	

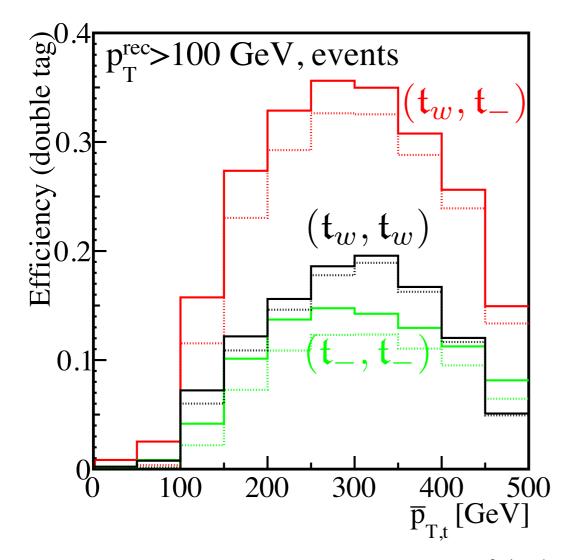

increase in number and quality 70% double tagged in total



better reconstruction

Consistency check

to enhance $R_i < 0.5$

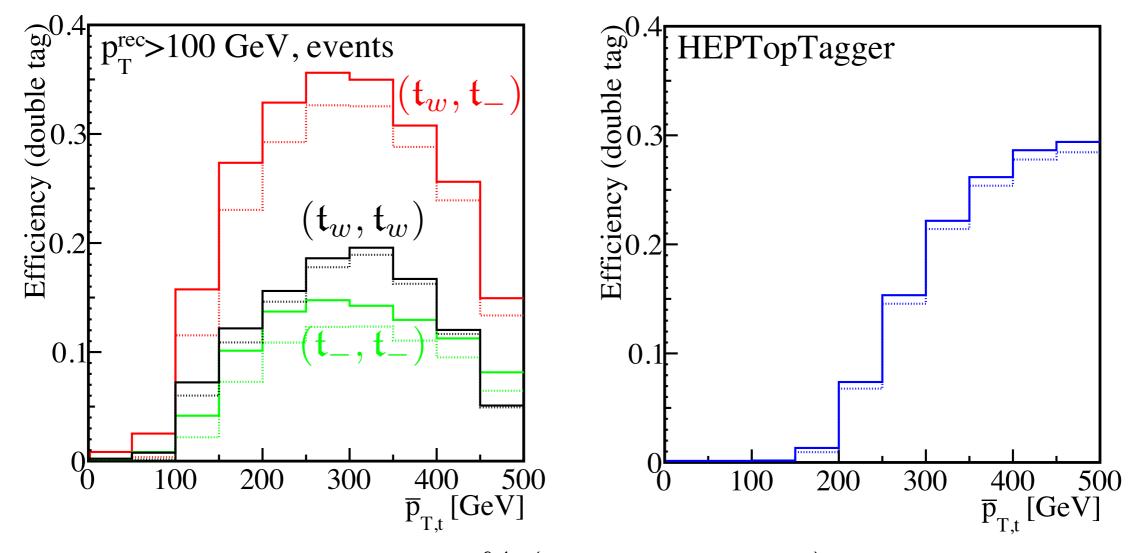

$$p_T^{\rm rec} > 100 {\rm GeV}$$

	$t_h \bar{t}_h + \text{jets [fb]}$	$R_1, R_2 < 0.5$	QCD [fb]	$S/B_{ m QCD}$
5 jets, 2b-tag	21590		16072	1.36
$(\mathfrak{t}_w,\mathfrak{t}_w), p_T^{\mathrm{rec}} > 100 \text{ GeV}$	1417	86.4%	27.1	52.3
$(\mathfrak{t}_w, \mathfrak{t}), p_T^{\rm rec} > 100 {\rm GeV} $	2805	80.5%	305.4	9.2
$(\mathfrak{t},\mathfrak{t}_w), p_T^{\mathrm{rec}} > 100 \text{ GeV}$	287.9	60.5%	26.4	10.9
$(\mathfrak{t}_{-},\mathfrak{t}_{-}), p_T^{\rm rec} > 100 \text{ GeV}$	1084	67.7%	339.3	3.2
total, $p_T^{\rm rec} > 100 \text{ GeV}$	5593	78.5%	698.2	8.0

 $\sim 80\%$ provide good momentum for both tops

Efficiency as functions of pT

base number: after 5j with 2b-tag selection



 $\bar{p}_{T,t} = 100 - 150 \text{ GeV}$: 30% (double top tags)

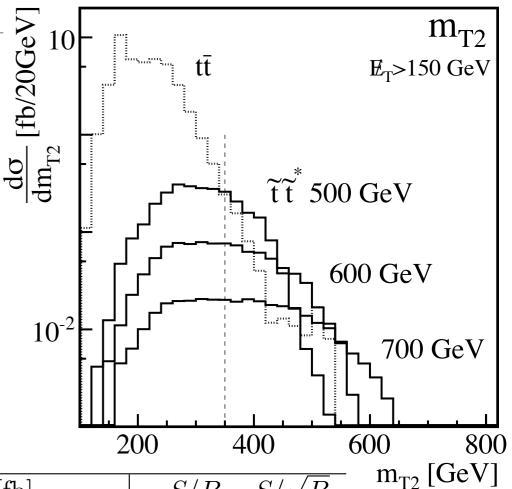
 $\bar{p}_{T,t} = 150 - 300 \text{ GeV}$: 50-70% (double top tags)

Efficiency as functions of pT

base number: after 5j with 2b-tag selection

 $\bar{p}_{T,t} = 100 - 150 \text{ GeV}$: 30% (double top tags)

 $\bar{p}_{T,t} = 150 - 300 \text{ GeV}$: 50-70% (double top tags)


for $\bar{p}_{T,t} > 300$ GeV, jet substructure method start to be efficient

Stop pair search

[arXiv:1302.6238[hep-ph] M. Buckley, T. Plehn, MT]

- $\tilde{t}\tilde{t}^* \to t\bar{t}\chi\chi$: $t\bar{t} + E_T$ typically 10^4 difference in cross section
- \bullet include \mathfrak{t}_{-} increase both signal and BG
- LHC 8 TeV with 25 fb $^{-1}$:

$$S/B \sim 1 \text{ for } m_{\tilde{t}} = 600 \text{ GeV}$$

	$t\bar{t}$ +jets [fb]		$\tilde{t}\tilde{t}^*$ [fb]		S/B	S/\sqrt{B}
$m_{\tilde{t}} \; [\mathrm{GeV}]$		500	600	700	60	00
before cuts	234×10^3	80.50	23.00	7.19		
veto lepton	157×10^3	50.45	14.38	4.46		
$\geq 5 \text{ jets}$	85.9×10^{3}	37.87	10.90	3.37		
2 b-tags	28.0×10^{3}	11.41	3.30	1.02		
2 tops reconstructed, $p_{T,t}^{\text{rec}} > 100 \text{ GeV}$	6.32×10^{3}	3.90	1.23	0.38	0.0002	0.08
$E_T > 150 \text{ GeV}$	44.71	2.80	0.98	0.33	0.02	0.7
$m_{T2} > 350 \mathrm{GeV}$	0.45	0.79	0.44	0.18	1.0	3.3
$100\% \tau \text{ rejection}$	0.14	0.73	0.40	0.16	2.8	5.3

12/13

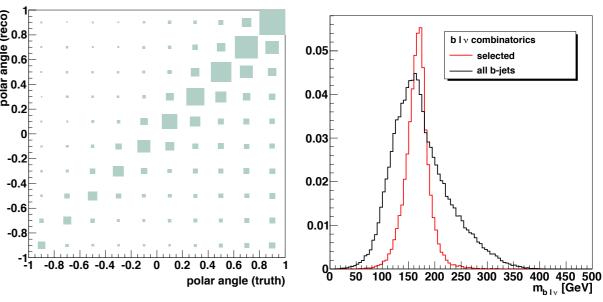
Forward-Backward charge asym. at ILC

• semi-leptonic top pairs

LC-REP2012-003: I. Garcia, E.Ros, J.Trenado, M.Vos

 ℓ , p, at least 4 jets


$$|m_{\ell\nu} - m_W| < 25 \text{ GeV}$$


$$|m_{\ell\nu j} - m_t| < 35 \text{ GeV}$$

$$|E_{\ell\nu} + E_j - E_{\text{beam}}| < 75 \text{ GeV}$$

 $\rightarrow \cos \theta_{\ell}$ reconstruction

- \bullet migration effect due to wrong j
- consider a bucket for t_h ?

Summary

- top: tool for new physics search
- keep low p_T signal tops : $p_{T,t} = 100 350 \text{ GeV}$
- buckets help to solve combinatorics
- bj-buckets provide ~ 4 times the signal