Top-Antitop Threshold Production: NNLL QCD Uncertainties

Maximilian Stahlhofen

In collaboration with André Hoang

[arXiv: 1111.4486]

Outline

$$e^+e^- \rightarrow t \, \overline{t}$$

- Top-antitop threshold @ lepton colliders
- Theory: NRQCD
- Total cross section at NNLL
- Theory error from scale uncertainties
- Summary

Top-antitop threshold @ lepton colliders

tt threshold scan:

tt threshold scan:

Experiment (simulation): $\Delta m_t < 100 \text{ MeV}$ $\Delta \Gamma_t \sim 30 \text{ MeV}$ $\Delta \alpha_s \sim 0.001$ $\Delta y_t / y_t \sim 35\%$

[Martinez, Miquel, '02] [Seidel, Simon, Tesar, Poss '13]

Theory goal:

 $\Delta \sigma_{\rm tot} / \sigma_{\rm tot} \lesssim 3\%$

<u>QCD near tt threshold:</u> $v \sim \alpha_s \ll 1$ "nonrelativistic bound state"

multiscale problem:

⇒ Resummation using Effective Field Theory

EW effects:

• LO: top decay (t \rightarrow W⁺b)

$$\Gamma_t\approx 1.5\,\text{GeV}\gg\Lambda_{QCD}$$

$$v_{eff} \equiv \sqrt{\frac{\sqrt{s} - 2m_t}{m_t}} \rightarrow \sqrt{\frac{\sqrt{s} - 2m_t + i\Gamma_t}{m_t}};$$

$$\frac{\text{``IR cutoff''}}{|v_{eff}| \gtrsim 0.1}$$

[Fadin, Khoze, '87]

• Higher orders: known to NNLL → talk by Ruiz-Femenia

[Hoang, Reisser, Ruiz-Femenia, '10] [Beneke, Jantzen Ruiz-Femenia, '10]

Problem of Coulomb singularities:

 \rightarrow Use Schrödinger Equation to resum $(\alpha_s/v)^n$ terms !

Problem of large logarithms:

 $\Box \rangle \ \alpha_{\rm s} \ln({\rm E}^2/{\rm m}^2), \ \alpha_{\rm s} \ln({\rm p}^2/{\rm m}^2), \ \alpha_{\rm s} \ln({\rm E}^2/{\rm p}^2) \ \sim \ \alpha_{\rm s} \ln v \ \sim \ 1$

Solution:

Two renormalization scales:

$$\left| \mu_{\mathsf{s}} = \mathsf{m}\nu, \ \mu_{\mathsf{u}} = \mathsf{m}\nu^{2} \right|$$

→ "v"NRQCD

 ν "subtraction velocity"

→ RGE's resum $[\alpha_{s} \ln v]^{n}$, $\alpha_{s} [\alpha_{s} \ln v]^{n}$, $\alpha_{s}^{2} [\alpha_{s} \ln v]^{n}$... terms LL NLL NNLL

$$\sigma_{tot}(s) \sim \operatorname{Im}\left[\begin{array}{c} c_1(\nu)^2 \cdot G(0, 0, E, \nu) + \dots \end{array} \right]$$

current renormalization

[Luke, Manohar, Rothstein; 2000] [Pineda; 2002] [Hoang, Stewart; 2003]

2.0

1.5

 $M_t^{1S} = 172 \, \text{GeV}, \ \Gamma_t = 1.5 \, \text{GeV}$ Uncertainty for peak position: $m\nu_*^2/2 \le \mu_{usoft} \le 2m\nu_*^2$ $1/2 \le h \le 2$ renormalon cancelation NLL at work! NNLL 344.1 344.3 344.4 344.5 344.0 344.2 \sqrt{s} (GeV)

Summary/Outlook

- precise $m_t, y_t, \alpha_s, \Gamma_t$ from t \overline{t} threshold @ LC
- $\sigma_{\text{tot}} \sim \text{Im}\left[\frac{c_1(\nu)^2}{C_1(\nu)^2} \cdot G(0, 0, E, \nu) \right] + \dots$
- $\mathsf{G}(\mathbf{0},\mathbf{0},\mathsf{E},\nu)\,$ known up to NNLL \checkmark
- New $c_1(\nu)$ at NNLL (good approximation) \checkmark
- EW conributions up to NNLL \checkmark
- $\Delta\sigma/\sigma \approx 4.5\%$ (NNLL peak)
- Stable peak position: $~\Delta M_t^{1S,QCD} \sim 20\,MeV$
- More detailed error analysis soon!

W.I.P

Backup

$$e^+e^- \rightarrow t \overline{t}$$

- $|\Gamma_t/m_t \sim \alpha_{EW} \sim \alpha_s^2 \sim v^2 \ll 1$ Power counting:
- Physical final state: $e^+e^- \rightarrow W^+W^-b\bar{b}$

- Apply loose invariant mass cuts on reconstructed tops/antitops: $p_{t\bar{t}}^2 = (m_t \pm \Delta M_t)^2 = m_t^2 + \Lambda^2$
 - no effect on resonant contributions! non-resonant background suppressed:

$$\begin{split} \mathsf{E} &= \sqrt{\mathsf{s}} - 2\mathsf{m}_{\mathsf{t}} \to \mathsf{E} + \mathsf{i}\mathsf{\Gamma}_{\mathsf{t}} \quad (\text{replacement rule}) \\ & \mathsf{i} \\ \\ \mathsf{stable top propagator:} \quad \frac{\mathsf{i}}{\mathsf{E}/2 + \mathsf{p}^0 - \mathbf{p}^2/(2\mathsf{m}) + \mathsf{i}\mathsf{\Gamma}_{\mathsf{t}}/2} \checkmark \quad [\mathsf{Fadin, Khoze, '87]} \end{split}$$

un

Beyond LO:

- QED: "Coulomb photon" → trivial extension of QCD corrections
- Gluon exchange with final state
 — negligible at NLO and NNLO

 [Fadin, Khoze, Martin '94] [Hoang, Reisser '05]
 [Melnikov, Yakovlev '94] [Beneke, Jantzen, Ruiz-Femenia '10]
- Corrections to current matching:

Beyond LO:

- QED: "Coulomb photon" → trivial extension of QCD corrections
- Gluon exchange with final state
 — negligible at NLO and NNLO

 [Fadin, Khoze, Martin '94] [Hoang, Reisser '05]
 [Melnikov, Yakovlev '94] [Beneke, Jantzen, Ruiz-Femenia '10]
- "Phase space matching" for $C(\nu)$ to allow for Λ cuts: NLO, NNLO, N³LO \checkmark

$$e^+e^- \rightarrow t \bar{t} H$$

Associated Higgs production

Associated Higgs production: $e^+e^- \rightarrow t \bar{t} H$

• For light Higgs ($m_H \approx 120 \text{ GeV}$): full t t phase space nonrelativistic!

 \rightarrow must sum $(\alpha_s/v)^n$, $(\alpha_s \ln v)^n$ terms \rightarrow recycle t t results (vNRQCD)

→ factor 2 enhancement over tree level (+ factor 2 from polarized beams)

• realistic studies: $(\delta y_t/y_t)_{500GeV}^{ILC} \sim 30\% \rightarrow 10 - 15\%$? [Juste, '02,'06]

Associated Higgs production: $e^+e^- \rightarrow t \bar{t} H$

- Dominant contributions from Higgs radiating of the top/antitop
- precise extraction of top Yukawa coupling possible
- At large E_H endpoint: $t \overline{t}$ dynamics nonrelativistic
- + For $\sqrt{s} \lesssim 500 \, GeV$ (ILC phase 1) and $m_H \approx 120 \, GeV$:

full t t phase space nonrelativistic !!! \rightarrow must sum $(\alpha_s/v)^n$, $(\alpha_s \ln v)^n$!

vNRQCD Recycle t
$$\overline{t}$$
 results: $c_1(\nu)/c_1(1)$, $G(0, 0, v, \nu)$

 γ, Z