A precise determination of top quark electroweak couplings at the ILC

I.García, E.Ros, P.Ruíz, M.Vos IFIC (UV-CSIC)

M.S. Amjad, T. Frisson, R.Pöschl, F.Richard, J.Rouëné LAL (Orsay-Paris)

ECFA LC2013. European Linear Collider Workshop. 27-31 May

1

INDEX

2

Introduction

- Experimental environment and data samples
- Event selection
- Observables and form factors
- Measurement of observables
 - The Forward–Backward asymmetry: A_{FB}
 - Slope of the helicity distribution
- Systematic uncertainties
- Results
- Conclusions and outlook

Theory

- The top quark is the heaviest elementary particle and it is the most strongly coupled to the mechanism of electroweak symmetry breaking.
- In contrast to the situation at hadron colliders, the dominant pair production process $e^+e^- \rightarrow t\bar{t}$ involves only $t\bar{t}Z^0$ and $t\bar{t}\gamma$ primary vertices

International Linear Collider (ILC)

- The c.o.m. energy: √s = 500 GeV (default design)
- Luminosity: $\mathcal{L} = 500 \text{ fb}^{-1} = 5 \times 10^5 \text{ pb}^{-1}$ (estimated for 4 years of running)
- Beams are **polarised**: $P(e^{-}) \approx \pm 80\%$, $P(e^{+}) \approx \pm 30\%$.

ILD detector is optimised for Particle Flow Algorithm (PFLOW), i.e. measure particles in jet in the best suited sub-detectors

So the expected energy resolution is:

$$\sigma_E / E \sim 3\%$$

Decay modes

 $e^+e^- \rightarrow t\overline{t}$ gives three different final states:

1) Fully hadronic (46.2%) \rightarrow 6 jets at final state

2) Semi-leptonic (43.5%) \rightarrow 4 jets + lepton + neutrino

http://www-flc.desy.de/lcnotes/ LC-REP-2013-008

http://www-flc.desy.de/lcnotes/ LC-REP-2013-007

3) Fully leptonic (10.3%) \rightarrow 2jets + 2 leptons + 2 neutrinos

This analysis is concentrate mainly on the events which have a <u>semi-leptonic final state</u>

$$t\overline{t} \longrightarrow (bW)(bW) \longrightarrow (bqq)(bl\nu)$$

Event generation and technical remarks

Event generation

- WHIZARD: event generation (samples for the DBD)
- **PYTHIA:** Generation of parton shower and hadronisation
- The input top mass to WHIZARD is 174 GeV

Latest improvements

- Single top background ~15%
 - It has been studied but its final state it's so similar to $e^+e^- \rightarrow t\overline{t}$ and it seems no possible to distinguish these events.

□ $\gamma\gamma \rightarrow$ hadrons. Is a process superposed to $e^+e^- \rightarrow t\overline{t}$ which degrades severally the angular distributions. It has been reduced with *kt* jet algorithm.

$\gamma\gamma$ to hadrons

- □ This background appears mainly in the very **forward region**.
- **Durham** (1st jet algorithm) includes these particles in the jets.
- Second jet clustering with *kt* algorithm → creates the so called beam-jets where very forward particles are included and reduces the impact in the final jets.

ECFA LC2013. European Linear Collider Workshop. 27-31 May

I.García IFIC (Valencia)

Event selection

- **Lepton identification** criteria:
 - Lepton is isolated from a jet $x_T = p_{T,lepton}/M_{jet} > 0.25$ and $z = E_{lepton}/E_{jet} > 0.6$ Taking into account the τ leptons \rightarrow Eff ~ 70%
- b-likeness or b-tag is determined analysing secondary vertices → jet mass, decay length and particle multiplicity. A b-tag value is assigned to each jet.

Event selection

The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation:

$$d^{2} = \left(\frac{m_{cand.} - m_{t}}{\sigma_{m_{t}}}\right)^{2} + \left(\frac{E_{cand.} - E_{beam}}{\sigma_{E_{cand.}}}\right)^{2} + \left(\frac{p_{b}^{*} - 68}{\sigma_{p_{b}^{*}}}\right)^{2} + \left(\frac{\cos\theta_{bW} - 0.23}{\sigma_{\cos\theta_{bW}}}\right)^{2}$$

Some cuts:

- **Hadronic mass of the final state:** $180 < m_{had.} < 420 \,\text{GeV}$
- **Reconstructed W mass:** $50 < m_W < 250 \,\text{GeV}$
- **Reconstructed top mass:** $120 < m_t < 270 \, \text{GeV}$
- **Isolated lepton:** *the best candidate*
- **b-tag values:** b-tag₁ > 0.8 & b-tag₂ > 0.3

The entire selection retains:

- **51.9%** for the configuration P,P' = -1,+1 (Left-handed electrons)
- **55.0%** for P,P' = +1, -1 (Right-handed electrons)

Observables

- **Total cross section** (**o**)
- The Forward-Backward Asymmetry (A_{FB})
- **D** The slope of the distribution of the helicity angle (λ_{hel})

But actually there are 6 independent observables \rightarrow

$\sigma(+)$	$A_{FB}(+)$	$\lambda_{_{hel}}(+)$	$(+=e_R^-)$
$\sigma(-)$	$A_{FB}(-)$	$\lambda_{_{hel}}(-)$	$(-=e_L^-)$

■ The expected values in the Standard Model are:

Observables	e ⁻ _L e ⁺ _R	e⁻ _R e⁺ _L
ơ(fb)	1564	724
A _{FB}	0.38	0.47
F _R	0.25	0.76

where $\mathbf{F}_{\mathbf{R}}$ is the fraction of right-handed tops

$$\longleftarrow \lambda_{hel} = 2F_R - 1$$

Measurement of observables 11

Forward-Backward asymmetry: A_{FB}

The Forward-Backward Asymmetry

$$A_{FB} = \frac{N_{top}(\cos\theta > 0) - N_{top}(\cos\theta < 0)}{N_{top}(\cos\theta > 0) + N_{top}(\cos\theta < 0)}$$

The sign of the top is the one of the lepton

I For \overline{t} we change θ to $\theta + \pi$

Results for A_{FB}

- We can see a clear migration effect for left-handed electrons
- This migration comes from the wrong combination of the W and the b-jet to reconstruct the top quark
- It occurs in about 30% of the times.

■ This gives a wrong direction of the reconstructed top and produces the migration effect.

How to cure migration? χ^2 strategy

$$\chi^2 = \left(\frac{\gamma_t - 1.435}{\sigma_{\gamma_t}}\right)^2 + \left(\frac{E_b^* - 68}{\sigma_{E_b^*}}\right)^2 + \left(\frac{\cos\theta_{bW} - 0.26}{\sigma_{\cos\theta_{bW}}}\right)^2$$

If we cut on χ^2 we reduce the number of wrong combinations of W and b-jet

\square $\chi^2 < 15 \rightarrow$ Reconstruction efficency : 29.6%

Helicity angle (θ_{hel})

In the rest frame of the top, θ_{hel} is the angle between the initial direction of the top and the lepton

The slope (λ_t) of the distribution gives the fraction of t_L and t_R in the sample.

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\cos\theta_{hel}} = \frac{1+\lambda_t\cos\theta_{hel}}{2} = \frac{1}{2} + (2F_R - 1)\frac{\cos\theta_{hel}}{2}$$

$$\lambda_t = 1 \text{ for } t_R \quad \lambda_t = -1 \text{ for } t_L$$

\mathcal{P},\mathcal{P}'	$(\lambda_t)_{gen.}$	$(\lambda_t)_{rec.}$	$(\delta \lambda_t)_{stat.}$	$(\delta \lambda_t)_{syst.}$
			for $\mathcal{P}, \mathcal{P}' = \mp 0.8, \pm 0.3$	
-1, +1	-0.519	-0.489	0.016	0.011
+1, -1	0.544	0.547	0.016	0.010

I.García IFIC (Valencia)

ECFA LC2013. European Linear Collider Workshop. 27-31 May

Systematic uncertainties

Luminosity

□ It can be controlled to 0.1%

Polarisation

- **DBD** studies $\rightarrow 0.1\%$ e- beam, 0.35% e+ beam
- $\sigma_{P,P'=-0.8,+0.3}$: 0.25% and $\sigma_{P,P'=+0.8,-0.3}$: 0.18%

Migrations

□ Cure migration in A_{FBL} leads to a penalty in efficiency

Theory

Electroweak and QCD corrections (ongoing)

Theoretical uncertainties

QCD uncertainties are lower than statistical errors

EW uncertainties are large for one-loop but lower values are expected for twoloops (not done yet)

Calculation is done for $e^+e^- \rightarrow t\overline{t}$ process, not for top decay modes

Extraction of the Physics

So once 6 observables are mesured, we can obtain the following 5 couplings of the top quark

$$\begin{array}{ccc} \sigma(+) & A_{FB}(+) & \lambda_{hel}(+) & (+=e_{R}^{-}) \\ \sigma(-) & A_{FB}(-) & \lambda_{hel}(-) & (-=e_{L}^{-}) \end{array} \end{array} \Longrightarrow \begin{cases} F_{1V}^{\gamma} & * & F_{2V}^{\gamma} \\ F_{1V}^{Z} & F_{1A}^{Z} & F_{2V}^{Z} \end{cases}$$

* $F_{1A}^{\gamma} = 0$ always because of the gauge invariance

Summary of the results

Outlook

- **\square** χ 2 optimisation
- **Theoretical errors** (EW and QCD) \rightarrow help from theoreticians is needed!
- **CP violation form factors** $(F_{2A}^{X}) \rightarrow$ looking for new observables
- Posibilities to measure the b-quark charge
 - b-quark charge measurement for fully hadronic top decays http://www-flc.desy.de/lcnotes/ LC-REP-2013-008
 - It is measured correctly in about 60% of the cases
 - Include this method in the semi-leptonic top decays

Conclusions

Polarisation allows to double the number of observables

- **Semi-leptonic events** can be selected with an **efficiency** about **55%**
 - □ The cross section can be measured to a statistical precision of about 0.5%
 - The forward-backward asymmetry to a precision better than 2% for both polarisations
 - The slope of helicity distribution to a precision of about 4%
- LC can characterize ttZ ttγ vertices with accuracies one or two orders of magnitude better than LHC

Thanks for your attention

ECFA LC2013. European Linear Collider Workshop. 27-31 May

I.García IFIC (Valencia)

BACKUP SLIDES

ECFA LC2013. European Linear Collider Workshop. 27-31 May

I.García IFIC (Valencia)

Particle Flow

Particle Flow (a powerful tool to measure the energy of the jets)

- Measurement of the charged particle momentum in the tracker \rightarrow charged component of the jet
- Measurement of the momentum of the neutral component of the jet_= total energy measured in the calorimetry – energy of the charged particles in the calorimeter.
- Total energy of the jet = charged component + neutral component

 $\sigma_E / E \approx 3\%$ (E en GeV)

Great granularity of the calorimeters

Calormeter (Silicon-Tungsten)

I.García IFIC (Valencia)

Single top

kt algorithm FastJet

Clusters with r > D can be merged if $\Delta E_r >> 0$

http://arxiv.org/pdf/1111.6097v1.pdf

1. For each pair of particles i, j work out the k_t distance

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \,\Delta R_{ij}^2 / R^2$$

with $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$, where k_{ti} , y_i and ϕ_i are the transverse momentum, rapidity and azimuth of particle *i* and *R* is a jet-radius parameter usually taken of order 1; for each parton *i* also work out the beam distance $d_{iB} = k_{ti}^2$.

- 2. Find the minimum d_{\min} of all the d_{ij}, d_{iB} . If d_{\min} is a d_{ij} merge particles *i* and *j* into a single particle, summing their four-momenta (this is *E*-scheme recombination); if it is a d_{iB} then declare particle *i* to be a final jet and remove it from the list.
- 3. Repeat from step 1 until no particles are left.

Where does this migration comes from?

- The W is emitted into the flight direction of the top togheter with a soft b
- In the case is the W is easily combine to good b to reconstruct the top

- **Left-handed** electron beam:
 - The W is emitted almost at rest togheter with a hard b
- In the case it is harder to combine the W and the good b to reconstruct the top