A precise determination of top quark electroweak couplings at the ILC

I.García, E.Ros, P.Ruíz, M.Vos IFIC (UV-CSIC)

M.S. Amjad, T. Frisson, R.Pöschl, F.Richard, J.Rouëné

 LAL (Orsay-Paris)

INDEX

- Introduction
- Experimental environment and data samples
- Event selection
- Observables and form factors
- Measurement of observables
- The Forward-Backward asymmetry: $A_{F B}$
- Slope of the helicity distribution
- Systematic uncertainties
- Results
- Conclusions and outlook

Theory

\square The top quark is the heaviest elementary particle and it is the most strongly coupled to the mechanism of electroweak symmetry breaking.

- In contrast to the situation at hadron colliders, the dominant pair production process $e^{+} e^{-} \rightarrow t \bar{t}$ involves only $t \bar{t} Z^{0}$ and $t \bar{t} \gamma$ primary vertices
- A way to describe the current at the $\bar{t} X$ vertex:
- $X=Z^{0}, \gamma$
arxiv.org/abs/hep-ph/0601112
$\square \quad V=$ Vector coupling
\square A $=$ Axial coupling

$$
\Gamma_{\mu}^{t t X}\left(k^{2}, q, \bar{q}\right)=i e\left\{\gamma_{\mu}\left(\widetilde{F}_{1 V}^{X}\left(k^{2}\right)+\gamma_{5} \widetilde{F}_{1 A}^{X}\left(k^{2}\right)\right)+\frac{(q-\bar{q})_{\mu}}{2 m_{t}}\left(\widetilde{F}_{2 V}^{X}\left(k^{2}\right)+\gamma_{5} \widetilde{F}_{2 A}^{X}\left(k^{2}\right)\right)\right\}
$$

International Linear Collider (ILC)

- The c.o.m. energy: $\mathrm{Vs}=500 \mathrm{GeV}$ (default design)
\square Luminosity: $\mathcal{L}=500 \mathrm{fb}^{-1}=5 \times 10^{5} \mathrm{pb}^{-1}$ (estimated for 4 years of running)
\square Beams are polarised: $\mathrm{P}\left(\mathrm{e}^{-}\right) \approx \pm 80 \%, \mathrm{P}\left(\mathrm{e}^{+}\right) \approx \pm 30 \%$.

ILD detector is optimised for Particle Flow Algorithm (PFLOW), i.e. measure particles in jet in the best suited sub-detectors

So the expected energy resolution is:

$$
\sigma_{E} / E \sim 3 \%
$$

Decay modes

$e^{+} e^{-} \rightarrow t \bar{t}$ gives three different final states:

1) Fully hadronic (46.2\%) $\rightarrow 6$ jets at final state
http://www-flc.desy.de/Icnotes/ LC-REP-2013-008
2) Semi-leptonic (43.5\%) $\rightarrow 4$ jets + lepton + neutrino
http://www-flc.desy.de/Icnotes/ LC-REP-2013-007
3) Fully leptonic (10.3\%) $\rightarrow 2$ jets +2 leptons +2 neutrinos

- This analysis is concentrate mainly on the events which have a semi-leptonic final state

$$
t \bar{t} \longrightarrow(b W)(b W) \longrightarrow(b q q)(b / \nu)
$$

Event generation and technical remarks

- Event generation

- WHIZARD: event generation (samples for the DBD)
\square PYTHIA: Generation of parton shower and hadronisation
- The input top mass to WHIZARD is 174 GeV
- Latest improvements
- Single top background $\sim 15 \%$
- It has been studied but its final state it's so similar to $e^{+} e^{-} \rightarrow t \bar{t}$ and it seems no posible to distinguish these events.

- $\gamma \gamma \rightarrow$ hadrons. Is a process superposed to $e^{+} e^{-} \rightarrow t \bar{t}$ which degrades severaly the angular distributions. It has been reduced with kt jet algorithm.

$\gamma \gamma$ to hadrons

- This background appears mainly in the very forward region.
- Durham (1st jet algorithm) includes these particles in the jets.
- Second jet clustering with kt algorithm \rightarrow creates the so called beam-jets where very forward particles are included and reduces the impact in the final jets.

Excess of particles in the forward region

$\boldsymbol{k t}$ algorithm with a jet size of $\mathrm{R}=1.50$ gives the best results

I.García IFIC (Valencia)

Event selection

- Lepton identification criteria:
- Lepton is isolated from a jet $x_{T}=p_{T, \text { lepton }} / M_{j e t}>0.25$ and $z=E_{\text {lepton }} / E_{j e t}>0.6$ Taking into account the τ leptons \rightarrow Eff $\sim 70 \%$
$\square b$-likeness or b-tag is determined analysing secondary vertices \rightarrow jet mass, decay length and particle multiplicity. A b-tag value is assigned to each jet.

$$
0<b-t a g<1
$$

Event selection

- The signal is reconstructed by choosing the combination of b quark jet and W boson that minimises the following equation:

$$
d^{2}=\left(\frac{m_{\text {cand. }}-m_{t}}{\sigma_{m_{t}}}\right)^{2}+\left(\frac{E_{\text {cand. }}-E_{\text {beam }}}{\sigma_{E_{\text {cand. }}}}\right)^{2}+\left(\frac{p_{b}^{*}-68}{\sigma_{p_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}-0.23}{\sigma_{\text {cos } \theta_{b}}}\right)^{2}
$$

- Some cuts:
- Hadronic mass of the final state: $180<m_{\text {had }}<420 \mathrm{GeV}$
- Reconstructed W mass: $50<m_{W}<250 \mathrm{GeV}$
- Reconstructed top mass: $120<m_{t}<270 \mathrm{GeV}$
- Isolated lepton: the best candidate
(b-tag values: b - tag $_{1}>0.8 \& b-$ tag $_{2}>0.3$
\square The entire selection retains:
- 51.9\% for the configuration $P, P^{\prime}=-1,+1$ (Left-handed electrons)
- 55.0\% for $P, P^{\prime}=+1,-1$ (Right-handed electrons)

Observables

- Total cross section (σ)
- The Forward-Backward Asymmetry (A_{FB})
- The slope of the distribution of the helicity angle $\left(\lambda_{\text {hel }}\right)$

But actually there are 6 independent observables $\rightarrow \begin{array}{llll}\sigma(+) & A_{F B}(+) & \lambda_{\text {hel }}(+) & \left(+=e_{R}^{-}\right) \\ \sigma(-) & A_{F B}(-) & \lambda_{\text {hel }}(-) & \left(-=e_{L}^{-}\right)\end{array}$

- The expected values in the Standard Model are:

Observables	$\mathrm{e}_{\mathrm{L}}^{-} \mathrm{e}_{\mathrm{R}}$	$\mathrm{e}_{\mathrm{R}^{-} \mathrm{e}_{\mathrm{L}}}$
$\boldsymbol{\sigma}(\mathrm{fb})$	1564	724
\mathbf{A}_{FB}	0.38	0.47
$\mathrm{~F}_{\mathrm{R}}$	0.25	0.76

where F_{R} is the fraction of right-handed tops

$$
\longleftarrow \lambda_{\text {hel }}=2 F_{R}-1
$$

Forward-Backward asymmetry: $\mathrm{A}_{\text {FB }}$

- The Forward-Backward Asymmetry

$$
A_{F B}=\frac{N_{t o p}(\cos \theta>0)-N_{t o p}(\cos \theta<0)}{N_{t o p}(\cos \theta>0)+N_{t o p}(\cos \theta<0)}
$$

$$
-1<A_{F B}<1
$$

- The sign of the top is the one of the lepton
\square For \bar{t} we change θ to $\theta+\pi$

Results for $\mathrm{A}_{\text {FB }}$

We can see a clear migration effect for left-handed electrons
\square This migration comes from the wrong combination of the W and the b-jet to reconstruct the top quark

- It occurs in about 30\% of the times.
- This gives a wrong direction of the reconstructed top and produces the migration effect.

How to cure migration? χ^{2} strategy

$$
\chi^{2}=\left(\frac{\gamma_{t}-1.435}{\sigma_{\gamma_{t}}}\right)^{2}+\left(\frac{E_{b}^{*}-68}{\sigma_{E_{b}^{*}}}\right)^{2}+\left(\frac{\cos \theta_{b W}-0.26}{\sigma_{\cos \theta_{b W}}}\right)^{2}
$$

- If we cut on χ^{2} we reduce the number of wrong combinations of W and b-jet
- $\chi^{2}<15 \rightarrow$ Reconstruction efficency : 29.6%

$\mathcal{P}, \mathcal{P}^{\prime}$	$\left(A_{F B}^{t}\right)_{\text {gen. }}$	$A_{F B}^{t}$	$\left(\delta_{A_{F B}} / A_{F B}\right)_{\text {stat. }}$. $\left.\%\right]$
$-1,+1$	0.360	0.344	$1.7\left(\right.$ for $\left.\mathcal{P}, \mathcal{P}^{\prime}=-0.8,+0.3\right)$
$+1,-1$	0.433	0.428	1.3 (for $\left.\mathcal{P}, \mathcal{P}^{\prime}=+0.8,-0.3\right)$

The χ^{2} cut removes the migration effect
for left-handed electrons

Helicity angle $\left(\theta_{\text {hel }}\right)$

- In the rest frame of the top, $\theta_{\text {hel }}$ is the angle between the initial direction of the top and the lepton

- The slope $\left(\lambda_{t}\right)$ of the distribution gives the fraction of t_{L} and t_{R} in the sample.

$$
\frac{1}{\Gamma} \frac{d \Gamma}{d \cos \theta_{h e l}}=\frac{1+\lambda_{t} \cos \theta_{h e l}}{2}=\frac{1}{2}+\left(2 F_{R}-1\right) \frac{\cos \theta_{h e l}}{2}
$$

$$
\lambda_{t}=1 \text { for } t_{R} \quad \lambda_{t}=-1 \text { for } t_{L}
$$

$\mathcal{P}, \mathcal{P}^{\prime}$	$\left(\lambda_{t}\right)_{\text {gen. }}$	$\left(\lambda_{t}\right)_{\text {rec. }}$	$\left(\delta \lambda_{t}\right)_{\text {stat. }}$ for $\mathcal{P}, \mathcal{P}^{\prime}=\mp 0.8, \pm 0.3$	$\left(\delta \lambda_{t}\right)_{\text {syst. }}$
$-1,+1$	-0.519	-0.489	0.016	0.011
$+1,-1$	0.544	0.547	0.016	0.010

Systematic uncertainties

- Luminosity
- It can be controlled to 0.1\%
- Polarisation
\square DBD studies $\rightarrow 0.1 \%$ e- beam, 0.35\% e+ beam
- $\sigma_{P, P^{\prime}=-0.8,+0.3}: 0.25 \%$ and $\sigma_{P, P^{\prime}=+0.8,-0.3}: 0.18 \%$
- Migrations
- Cure migration in $A_{F B L}$ leads to a penalty in efficiency
- Theory
- Electroweak and QCD corrections (ongoing)

Theoretical uncertainties

- QCD uncertainties are lower than statistical errors

(a) Perturbation series

(b) Scale variations
$\sqrt{s}(\mathrm{GeV})$

$$
\mathrm{N}^{3} \mathrm{LO} \rightarrow \delta \sigma^{\mathrm{QCD}} \sim 3 \% \text { and } \delta A_{F B} \mathrm{QCD} \sim 1 \%
$$

\qquad

Extraction of the Physics

\square So once 6 observables are mesured, we can obtain the following 5 couplings of the top quark

$$
\left.\begin{array}{llll}
\sigma(+) & A_{F B}(+) & \lambda_{h e l}(+) & \left(+=e_{R}^{-}\right) \\
\sigma(-) & A_{F B}(-) & \lambda_{h e l}(-) & \left(-=e_{L}^{-}\right)
\end{array}\right\} \Rightarrow\left\{\begin{array}{ccc}
F_{1 V}^{\gamma} & * & F_{2 V}^{\gamma} \\
F_{1 V}^{Z} & F_{1 A}^{Z} & F_{2 V}^{Z}
\end{array}\right\}
$$

* $F_{1 A}{ }^{\gamma}=0$ always because of the gauge invariance

Summary of the results

Coupling	SM value	$\begin{gathered} \text { LHC [1] } \\ \mathcal{L}=300 \mathrm{fb}^{-1} \end{gathered}$	$\begin{gathered} e^{+} e^{-}[6] \\ \mathcal{L}=300 \mathrm{fb}^{-1} \\ \mathcal{P}, \mathcal{P}^{\prime}=-0.8,0 \end{gathered}$	$\begin{gathered} \hline e^{+} e^{-}[\text {ILC DBD] } \\ \mathcal{L}=500 \mathrm{fb}^{-1} \\ \mathcal{P}, \mathcal{P}^{\prime}= \pm 0.8, \mp 0.3 \end{gathered}$
$\Delta \widetilde{F}_{1 V}^{\gamma}$	0.66	+0.043 -0.041	-	$\begin{aligned} & +0.002 \\ & { }_{-0.002}^{+0} \end{aligned}$
$\Delta \widetilde{F}_{1 V}^{Z}$	0.23	+0.240 -0.620	$\begin{aligned} & +0.004 \\ & -0.004 \end{aligned}$	$\begin{aligned} & +0.002 \\ & { }_{-0.002} \end{aligned}$
$\Delta \widetilde{F}_{1 A}^{Z}$	-0.59	+0.052 +0.060	$\begin{aligned} & +0.009 \\ & { }_{-0.013} \end{aligned}$	$\begin{aligned} & +0.006 \\ & { }_{-0.006} \end{aligned}$
$\Delta \widetilde{F}_{2 V}^{\gamma}$	0.015	+0.038 -0.035	+0.004 -0.004	+0.001 -0.001
$\Delta \widetilde{F}_{2 V}^{Z}$	0.018	+0.270 +0.190	$\begin{aligned} & +0.004 \\ & -0.004 \end{aligned}$	$\begin{aligned} & +0.002 \\ & -0.002 \end{aligned}$

Outlook

- $\chi 2$ optimisation
- Theoretical errors (EW and QCD) \rightarrow help from theoreticians is needed!
- CP violation form factors $\left(F_{2 A}{ }^{X}\right) \rightarrow$ looking for new observables
- Posibilities to measure the b-quark charge
\square b-quark charge measurement for fully hadronic top decays http://www-flc.desy.de/Icnotes/ LC-REP-2013-008
- It is measured correctly in about 60\% of the cases
- Include this method in the semi-leptonic top decays

Conclusions

- Polarisation allows to double the number of observables
\square Semi-leptonic events can be selected with an efficiency about 55\%
- The cross section can be measured to a statistical precision of about 0.5\%
- The forward-backward asymmetry to a precision better than 2% for both polarisations
- The slope of helicity distribution to a precision of about 4\%
- LC can characterize ttZ tt γ vertices with accuracies one or two orders of magnitude better than LHC

Thanks for your attention

BACKUP SLIDES

Particle Flow

Particle Flow (a powerful tool to measure the energy of the jets)

- Measurement of the charged particle momentum in the tracker \rightarrow charged component of the jet
- Measurement of the momentum of the neutral component of the jet_= total energy measured in the calorimetry - energy of the charged particles in the calorimeter.
- Total energy of the jet = charged component + neutral component

$$
\sigma_{E} / E \approx 3 \% \quad(E \text { en } G e V)
$$

Great granularity of the calorimeters

Single top

This is the vertex we want to probe

This is a background we can reduce

This is a problem

kt algorithm FastJet

http://arxiv.org/pdf/1111.6097v1.pdf

1. For each pair of particles i, j work out the k_{t} distance

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}
$$

All clusters with $\mathrm{r}<\mathrm{D}$ are merged Clusters with $\mathrm{r}>\mathrm{D}$ can be merged if $\Delta \mathrm{E}_{\mathrm{T}} \gg 0$
with $\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}$, where $k_{t i}, y_{i}$ and ϕ_{i} are the transverse momentum, rapidity and azimuth of particle i and R is a jet-radius parameter usually taken of order 1 ; for each parton i also work out the beam distance $d_{i B}=k_{t i}^{2}$.
2. Find the minimum $d_{\min }$ of all the $d_{i j}, d_{i B}$. If $d_{\min }$ is a $d_{i j}$ merge particles i and j into a single particle, summing their four-momenta (this is E-scheme recombination); if it is a $d_{i B}$ then declare particle i to be a final jet and remove it from the list.
3. Repeat from step 1 until no particles are left.

Where does this migration comes from?

- Right-handed electron beam:
- The W is emitted into the flight direction of the top togheter with a soft b
- In the case is the W is easily combine to good b to reconstruct the top
- Left-handed electron beam:
- The W is emitted almost at rest togheter with a hard b
- In the case it is harder to combine the W and the good b to reconstruct the top

