Comparison of pion and proton showers in the CALICE Sc-Fe AHCAL

Marina Chadeeva (ITEP, Moscow)

on behalf of the CALICE Collaboration

Introduction and outline

CALICE calorimeter prototypes

Highly granular calorimeters developed for the future LC experiments

Test beam campaigns for physics prototypes:

- Check calibration procedures
- Understand detector simulation
- Test Geant4 hadronic models
- Proof the reliability of extrapolation to full detector studies

CALICE test beam setup at CERN

Outline

- Response and resolution
- Longitudinal center of gravity
- Mean shower radius

CALICE Sc-Fe AHCAL

CALICE scintillator-steel analogue hadronic calorimeter

Physics prototype with 7608 cells in ${\sim}1~m^3$

Longitudinal sampling: 38 layers (\sim 5.3 $\lambda_{\rm I}$), 20 mm Fe + 5 mm Sc per layer

Transverse segmentation: 3x3, 6x6 and 12x12 cm² cells with SiPM readout

Test beam setup

Positive hadron beams @ 10-80 GeV in CERN and FNAL, configurations with and w/o ECAL

Čerenkov counter upstream and tail catcher and muon tracker (TCMT) downstream of the calorimeter are used for event selection.

Calibration

Cell response equalized with MIP, the lower threshold 0.5 MIP was applied for analysis

EM scale calibrated with positrons

2011 JINST 6 P04003, 2010 JINST 5 P05004

Marina Chadeeva (ITEP)

ECFA LC 2013, DESY, Hamburg, Germany

Geant4 simulations

Simulations with Geant4 version 9.6 patch 01 (performed by Sergey Morozov)

FTFP_BERT physics list is now recommended by Geant4 team. Version comparison done for two physics lists: FTFP_BERT and QGSP_BERT. CHIPS physics list is deprecated.

Software tools

Mokka environment, versions 07-07p04 for Geant4 v9.4 and 08-01 for Geant4 v9.6 Digitization of Monte Carlo samples including SiPM response and noise from data runs

Hadronic showers in a highly granular calorimeter

Position of a primary inelastic interaction can be identified on event-by-event basis

Identification of shower starting point

True MC shower start vs found starting layer for 80 GeV π^- , QGSP_BERT from Geant4 9.3

Performance: correlation >90%(85% @ 10 GeV) Helpful for event selection, minimization of leakage and offline compensation

Figure from CAN-026

Nuclear interaction length

Response to hadrons

Energy reconstruction

Selected shower start at the beginning of AHCAL (track in ECAL)

For each event $E_{\rm event} = (E_{\rm ECAL}^{\rm track})_{\rm MIPscale} + 1.2 \cdot (E_{\rm AHCAL} + E_{\rm TCMT})_{\rm EMscale}$

 $E_{
m reco}$ and $\sigma_{
m reco}$ obtained from Gaussian fit, response to π^+ and π^- agrees within $\pm 1\%$

 $E_{
m available}^{
m proton} = \sqrt{P_{beam}^2 + m_{
m proton}^2} - m_{
m proton}$

Linearity of positive hadron response (simulations with Geant4 9.4)

Difference in response \sim 1-4% cannot be explained by the baryon conservation law.

Response and resolution

Response to hadrons in Geant4 9.4 and Geant4 9.6

 π^+

Improved FTFP_BERT predictions at higher energies

Better agreement with data at lower energies for FTFP_BERT in both versions

Protons

Minor changes in right direction for both physics lists

Response and resolution

Fractional energy resolution

Experimental resolution

Estimated for π^{\pm} data with fixed noise term:

$$rac{58\%}{\sqrt{E/{
m GeV}}} \oplus 1.6\% \oplus rac{0.18}{E/{
m GeV}}$$

 $\boldsymbol{\pi}$ and proton data in agreement within uncertainties

Improved by software compensation to $\frac{45\%}{\sqrt{E/GeV}}$

2012 JINST 7 P09017

Geant4 simulations

Minor differences between Geant4 9.4 and Geant4 9.6

Geant4 physics lists predict lower stochastic term and higher constant term

Better prediction for all hadrons by QGSP_BERT

Better prediction for protons than for pions

Longitudinal center of gravity of pion showers

Shower CoG in longitudinal direction for event with shower start position $z_{\rm start}$:

$$\mathsf{Z0} = \frac{\sum e_i \cdot (z_i - z_{\text{start}})}{\sum e_i}$$

Sum over hits with longitudinal position $z_i \geq z_{\rm start}$ and signal $e_i \geq 0.5$ MIP

Simulations with Geant4 9.4

Longitudinal center of gravity of proton showers

Main contribution to systematic uncertainty <zo> [کرا <zo> from contamination with pions (5-35%) Relative bias of $\langle Z0 \rangle$ up to $\sim 3\%$ (gray band) 1.4 Pion to proton comparison proton Longitudinal CoG of proton shower on average $\sim 5\%$ deeper in data $\langle \mathbf{Z0} \rangle_{\mathrm{proton}} / \langle \mathbf{Z0} \rangle_{\pi} \approx 1.05$ 10 Beam momentum [GeV/c] / <Z0>_{Dat} 1.15 <Z0>_{MC} / Simulations to data comparison 1.05 $\langle \mathbf{Z0} \rangle_{proton}$ overestimated by FTFP_BERT and FTF_BIC by ~5% 0.95 0.9 underestimated by QGSP_BERT, QBBC and 0.85 CHIPS by $\sim 5\%$ above 20 GeV 0.8 60 80 Beam momentum [GeV/c]

Longitudinal center of gravity

Longitudinal center of gravity: Geant4 9.4 vs Geant4 9.6

FTFP_BERT

QGSP_BERT

Minor changes in wrong direction for both pions and protons

r.m.s. of longitudinal center of gravity σ_{Z0}

The r.m.s. of CoG in longitudinal direction

$$\sigma_{\rm Z0} = \sqrt{\frac{\sum e_i \cdot (z_i - z_{\rm start} - \langle {\rm Z0} \rangle)^2}{\sum e_i}}$$

Sum over hits with longitudinal position $z_i \geq z_{\mathrm{start}}$ and signal $e_i \geq 0.5$ MIP

(Z0) - mean longitudinal CoG

 «
 «
 »
 «
 »
 »
 «
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 »
 1.05

0.95

Simulations with Geant4 9.4

r.m.s. of longitudinal center of gravity: Geant4 9.4 vs Geant4 9.6

FTFP_BERT

Good agreement with data in Geant4 9.6

QGSP_BERT

Minor changes in wrong direction for both pions and protons

Mean shower radius for pion showers

Shower radius $R = \frac{\sum e_i \cdot r_i}{\sum e_i}$

 $\begin{array}{l} \mbox{Sum over hits with longitudinal position} \\ z_i \geq z_{\rm start} \mbox{ and signal } e_i \geq 0.5 \mbox{ MIP} \\ \mbox{Radial distance } r_i \mbox{ from hit } (x_i,y_i) \mbox{ to shower} \\ \mbox{axis } (x_0,y_0): \ r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} \\ \end{array}$

Typical distribution of R

NB: AHCAL half width ${\sim}450$ mm, beam around the center of AHCAL front plane

Simulations with Geant4 9.4

Mean shower radius for proton showers

Pion to proton comparison

Proton showers on average ${\sim}10\%$ wider

 $\left< {\bf R} \right>_{\rm proton} / \left< {\bf R} \right>_{\pi} \approx 1.1$

Simulations to data comparison

Mean shower radius for protons underestimated above 10 GeV by ${\sim}10\%$ by QGSP_BERT, QBBC and CHIPS

Better predictions with FTF_BIC physics list

Simulations with Geant4 9.4

Mean shower radius

Mean shower radius: Geant4 9.4 vs Geant4 9.6

FTFP_BERT

Difference from data reduced to 5%!

Good agreement with data above 20 GeV in Geant4 9.6

QGSP_BERT

No changes in QGSP_BERT

Simulations with Geant4 9.4

r.m.s of shower radius $\sigma_{\rm R}$

The r.m.s. of shower radius:

$$\sigma_{\mathsf{R}} = \sqrt{\frac{\sum \mathsf{e}_{\mathsf{i}}(\mathsf{r}_{\mathsf{i}} - \langle \mathsf{R} \rangle)^2}{\sum \mathsf{e}_{\mathsf{i}}}}$$

Sum over hits with longitudinal position $z_i \geq z_{\mathrm{start}}$ and signal $e_i \geq 0.5$ MIP

 $\langle \mathbf{R} \rangle$ - mean shower radius

0.9 100 <a>colume 0.85 60 80 20 Beam momentum [GeV/c] 95 90 <or> <σ_R>_{MC} / <σ_R>_{Data} 85 proton 80 1.05 75 70 65 0.95 CALICE Preliminary 60 10 104 0.9 Beam momentum [GeV/c] 0.85^L 60 80 20 40

<GR > MC / GR > Data

0.95

1.15

Beam momentum [GeV/c]

Mean shower radius

r.m.s. of shower radius: Geant4 9.4 vs Geant4 9.6

FTFP_BERT

Improvement in all studied energy range

Good agreement with data in Geant4 9.6

QGSP_BERT

Minor changes in the right direction

Summary

Parameters of hadronic showers in the highly granular Sc-Fe AHCAL were analyzed for test beam data in the energy range 10-80 GeV and compared with Geant4 simulations.

Pion and proton showers

- Lower response for protons can be largely (except for 1-4%) explained by available energy.
- Longitudinal center of gravity of proton shower is on average 5% deeper in the calorimeter.
- $\bullet\,$ Mean shower radius for protons is about 10% larger than for pions.

Simulations to data comparison

- Simulations show steeper energy dependence of response for pions than observed in data.
- The best prediction of fractional energy resolution for hadrons is given by QGSP_BERT.
- Fritiof-based models give better predictions of longitudinal CoG for pions.
- Mean shower radius for pions tends to be underestimated (except for by CHIPS).

Progress in FTFP_BERT: from Geant4 version 9.4 to version 9.6

- Improvement of pion response at higher energies (50-80 GeV)
- Improved predictions of longitudinal CoG below 40 GeV but slightly worse at higher energies
- Much better predictions of mean shower radius for pions (5% difference instead of 10% in Geant4 9.4) and good agreement with data for protons

Backup slides

p/π ratio

Comparison with ATLAS TileCal test beam data

ATLAS Sc-Fe TileCal (14 mm Fe + 3 mm Sc)/period Figure from NIM A615 (2010) 158-181

50 GeV point for comparison of $\frac{p}{\pi}$ in data: ATLAS: 0.961 \pm 0.009(syst.) \pm 0.002(stat.) CALICE: 0.958^{+0.012}_{-0.016}(syst.) \pm 0.001(stat.)

Response of Sc-Fe AHCAL to hadrons: data, QGSP_BERT, CHIPS

QGSP_BERT physics list from Geant4 9.4

CHIPS physics list from Geant4 9.4

p/π ratio from test beam data and simulations with Geant4 9.4

 $p/\pi = E_{reco}^{proton}/E_{reco}^{\pi}$

Good prediction by QGSP_BERT, QBBC and CHIPS,

Underestimated by FTFP_BERT and FTF_BIC,

```
Improvement in Geant4 9.6
```

Noticeably improved for FTFP_BERT above 30 GeV Improved for QGSP_BERT at 10 GeV