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Exploring Hadronic Showers

* Hadronic showers have a complex structure - also in time!
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o Effect on shower geometry: Neutrons
have high range!
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Shower Components

Absorber Active » Effect on shower geometry: Neutrons
have high range!
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* The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype

e 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm?3)
absorber

* Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by
SiPMs (no time information available)
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T3B: The Study of the Time Structure

* The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype

e 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm?3)
absorber

* Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by
SiPMs (no time information available)

e T3B (Tungsten Timing Test Beam)

* Goal: Measure the time structure of the signal within hadronic showers in a
Tungsten calorimeter with scintillator readout -

* Use a (very) small number of scintillator cells,
read those out with high time resolution -§<

* Record signal over long time window:
~ 2 ps to sample the full shower development
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T3B: The Study of the Time Structure

* The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype

e 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm?3)
absorber

* Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by
SiPMs (no time information available)

e T3B (Tungsten Timing Test Beam)

* Goal: Measure the time structure of the signal within hadronic showers in a
Tungsten calorimeter with scintillator readout -

* Use a (very) small number of scintillator cells,
read those out with high time resolution

* Record signal over long time window:
~ 2 ps to sample the full shower development

f < First information on time structure, possibility for comparisons to Geant4,
| but: no complete “4D” shower reconstruction!

| —_—
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The T3B Setup - Tungsten
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The T3B Setup - Tungsten

* 15 3 x 3 cm? scintillator cells, sampling the radial extent of the shower

beam axis OL1LE2131415160 7181910011 12013014
through cell O

Stand-alone system:

e |nstalled downstream of CALICE WHCAL,
depth ~ 5 A

* Each cell read out with 1.25 GS oscilloscope,
2.4 ys sampling time per event

« Calibration triggers on dark noise between spills

Synchronization with CALICE

* Triggered by CALICE trigger - common analysis
possible
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* 15 3 x 3 cm? scintillator cells, sampling the radial extent of the shower

beam axis
through cell O

Stand-alone system only:
 Installed downstream of CALICE SDHCAL
(Glass RPCs between steel absorbers),
depth ~ 6 A
 |dentical readout for T3B
* No correlation of T3B and SDHCAL data
streams
 Different DAQ version
e Data taken during SDHCAL commissioning:
Low data rate, insufficient for timing
measurements
» Standalone trigger for T3B
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Data Analysis - Results in Steel & Tungsten
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Muon Data - 180 GeV
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CALICE T3B Preliminary

Time of first Hit [ns]

Energy Deposition [MIP]

e The “universal” T3B observable: Time of First Hit

* Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit
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Data Analysis - Results in Steel
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Steel Data - Hadrons 60 GeV
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Energy Deposition [MIP] Energy Deposition [MIP]

e The “universal” T3B observable: Time of First Hit

* Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit

e Substantial difference between showers in steel and tungsten: More
pronounced late activity in W
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Hit Time Distributions - Compared to Simulations

IHa;drcI)ns Steel 60 GeV: ° Sharp fall-off of hit numbers
— QGSP_BERT HP with time: Most of the hits are
—— QGSP_BERT o

within the few ns
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Hadrons Tungsten 60GeV:
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* Good reproduction of distribution

In steel by all models

* |n tungsten sophisticated neutron
treatment is mandatory: high
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Tlmlng as a Functlon of H|t Energy

Data Set:
—Y— Tungsten 60 GeV Hadrons

IR GALICE '|'3|3 Prehmmary ...... ... —¥— Steel 60 GeV Hadrons
i —¥— Muons 180 GeV

Mean Time of First Hit [ns]

Energy Deposition [MIP]

* |n steel late energy deposits are mostly of low energy, in tungsten also
higher-energy late contributions are seen
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Timing as a Function of Hit Energy
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* |n steel late energy deposits are mostly of low energy, in tungsten also

higher-energy late contributions are seen

» All studied physics lists reproduce behavior in steel satisfactorily
* Neutron treatment important in Tungsten - QGSP_BERT_HP and QBBC only
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Timing as a Function of Radius
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— Hadron Data Set:
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* Late energy deposits are more important in the outer regions of a shower

 More pronounced effect in tungsten than in steel
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Timing as a Function of Radius
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* Late energy deposits are more important in the outer regions of a shower

 More pronounced effect in tungsten than in steel

* |n steel: Good description by all physics lists (on the level of a few 100 ps)

* |In tungsten: Neutrons are of key importance - only QGSP_BERT_HP and
QBBC provide a good prediction

Frank Simon (fsimon@mpp.mpg.de)

A [l (ea Time Structure of Hadronic Showers
— ECFA LC2013, May 2013



Alternative Readout:

* Provide a direct comparison of scintillator and gaseous readout:
FastRPC - A 1 to 1 copy of T3B, but with a glass RPC instead of scintillators
e identical granularity: 3 x 3 cm?, one strip behind the CALICE WDHCAL

 identical data acquisition: 2.4 ys acquisition window with 800 ps readout

 identical analysis strategy - reconstruction of time of first hit

CALICE WDHCAL, ~ 5A
tungsten & RPC active layers

RPC (produced at ANL)

FastRPC readout board,
connected to oscilloscopes

Time Structure of Hadronic Showers ) )
Frank Simon (fsimon@mpp.mpg.de)
ECFA LC2013, May 2013




Sensmwty to Tlme Structure RPCs

e RPCs are also sensitive

+ Muons
—4— Pions @80 Gev | 3 tolate shower
—+— Pions @ 180 GeV components in

tungsten

N;.ue Per Event

e No beam energy
dependence of late
contributions observed

! I ! ! ! ! I ! ! ! ! I
100 150 200
Time of 1st Hit (ns)

normalized to number of
events with FastRPC hits
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Sensitivity to Time Structure - RPCs

N;.ue Per Event

e RPCs are also sensitive

—F Muons

—+— Pions @ 80 Gev | 5 to late shower

—+— Pions @ 180 GeV |.- components in

normalized to number of
events with FastRPC hits

'ad ( Time Structure of Hadronic Showers
'i‘«:;a" jL\L| % f

ECFA LC2013, May 2013

tungsten

e No beam energy
dependence of late
contributions observed
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Scintillator vs Gas -

—¢— FastRPC
| —4— FastRPC n @ 80 GeV

| —— T3B 1@ 60 GeV
_CALICE preliminary

 Comparable behavior for

prompt component

e Striking difference in
intermediate range:

N;. ey per Event

~8nsto 50 ns
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Scintillator vs Gas - Difference in Sensitivity

1

'—+—' . FastF'{PC'u'
—4— FastRPC n @ 80 GeV
| —— T3B 1@ 60 GeV

Comparable behavior for

10 prompt component

Striking difference in
intermediate range:

Ny Per Event

~8nsto 50 ns

_l__l_l_l_l_ll_l____l__l_] I_Il___I__J lII_IJ}___I__I__I_I_I_IJI_I____I__I__I_I_IJI_I

Further quantified:

l...J..I.HH .| ¥ IIJ[...I..l.I.I.I.IJII...J..I.IHJII]...l.J.llllIJl...|..l.I.I.I.IJII...J..I.IJHLL

Factor 5 - 8 suppression
of intermediate
component in gaseous
e . detectors: MeV - scale

| 103 | neutrons: High sensitivity
Time of 1st Hit (ns) of scintillators through
elastic scattering on H
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normalized to number of events with FastRPC hits
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Radial Profile with Gaseous and Scintillator Readout
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* Reduced late component with RPC readout: Prompt shower core dominates
mean hit timing out to larger radii, overall reduced mean
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Adding a 4th Dimension: Depth

* Event-by-event measurement of the
depth of T3B relative to the shower start

» By combining large data samples, the
average time structure of hadronic
showers can be measured over a depth
of 5\

depth of T3B in shower

» 4D shower images with unprecedented granularity
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Shower @ -8 to -6 ns CALICE T3B Data
W77 1 T = 0: Activity
' maximum in layer 39
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Shower @ -6 to -4 ns

T = 0: Activity
maximum in layer 39
(rear of calorimeter)

Shown: First hits in
each cell only
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Shower depth [layer] =
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Shower @ -2 t0 0 ns
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Shower @ 0 to 2 ns
15t----!-- T = 0: Activity
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The Life of a Pion in the WAHCAL

Shower @ 2 to 4 ns CALICE T3B Data
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The Life of a Pion in the WAHCAL

Shower @ 6 to 8 ns CALICE T3B Data
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The Llfe of a Plon in the WAHCAL
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Shower @ 30 to 40 ns
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The Llfe of a Plon |n the WAHCAL

CALICE T3B Data
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The Llfe of a Plon |n the WAHCAL
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Longitudinal Dependence -

—h

Mean time of First Hit [ns]
o
o
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- w Hadron 60 GeV: 0.0 cm to 3.1 cm dlstance from shower axis -
- z QBBC .
_ .................... Q GSPBERT .......................... .......................... ............ —
5 : QGSP BERT_ HP '_I_' 7

0 1 2 3 4 5
Distance from Shower Start [A ]

Comparison to MC

* Increased importance
of late shower
contributions towards
the rear of the shower

* Well reproduced by physics lists with precise neutron treatment

 QGSP_BERT shows significant deviations from the data -
overestimation of late components towards shower rear
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Longitudinal Dependence -
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Mean time of First Hit [ns]
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- w Hadron 60 GeV: 0.0 cm to 3.1 cm dlstance from shower axis -
- z QBBC .
_ .................... Q GSPBERT .......................... .......................... ............ —
5 : QGSP BERT_ HP '_I_' 7

0 1 2 3 4 5
Distance from Shower Start [A ]

Comparison to MC

* Increased importance
of late shower
contributions towards
the rear of the shower

Region most dominated
by electromagnetic sub-
showers: Large
dominance of prompt
hits

* Well reproduced by physics lists with precise neutron treatment

 QGSP_BERT shows significant deviations from the data -
overestimation of late components towards shower rear

ECFA LC2013, May 2013
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Summary

Time structure of hadronic showers highly relevant for calorimetry at future

colliders
o Within CALICE dedicated experiments have been carried out to study it in tungsten
and steel with scintillators (T3B) and gaseous detectors (FastRPC)

Results demonstrate that good treatment of neutrons, provided by the
GEANT4 QGSP_BERT_HP and QBBC physics lists, is crucial for tungsten

Time structure in steel in general well described by all investigated models

In gaseous detectors, the sensitivity to late components is reduced, in
particular to MeV-scale evaporation neutrons in the few to a few 10 ns time

frame
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Data Analysis - Technique

* For each channel, a complete waveform with 3000 samples is saved

* Waveform decomposed into individual photon signals, using averaged 1 p.e.
signals

e Average 1 p.e. signal taken from calibration runs between spills, refreshed every
5 minutes: Continuous automatic gain calibration

0.12

Reconstruction of the time
CALICE T3B 10 GeV " waveform

original signal

reconstructed waveform
identified photon signals

0.1
of each photo-electron

In addition: Constantly
adjusted MIP calibration

signal amplitude [V]
signal amplitude [p.e.]

ARRRRRRRRR.

based on temperature and
voltage

ARRRRRNRN

NN
e
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Triple Exponential Fit - Results

e
e —

Ao Tp (ns)

3.75x10°+1.50 x 107%  4.09+0.13 1.44x10*+£1.4x 10> 33.0+2.6

A» 7> (ns) c

1.82x10°482x 1077 480428 293x10°+1.38x 1077

Table 1: Fit parameters for the 80 GeV ™ FastRPC data, using the fit function in equation 4.1.

Ao 7o (ns) Aq 71 (ns)
1.89% 10 “4+1.3x 107 4584022 201x10°428x10% 1374106

A> 7> (ns) Cc

2.66x10°+62x 1077 566+26 4.46x10°°+£2.22x 107"

Table 2: Fit parameters for the 60 GeV n™ T3B data, using the fit function in equation 4.1.

NTorH
Y Events with FastRPC Hits

:Aooe(—%) +Al -e(__

Time Structure of Hadronic Showers

Frank Si fsi . :
ECFA LC2013, May 2013 rank Simon (fsimon@mpp.mpg.de)




