

ILC Technical Status Report

Akira Yamamoto

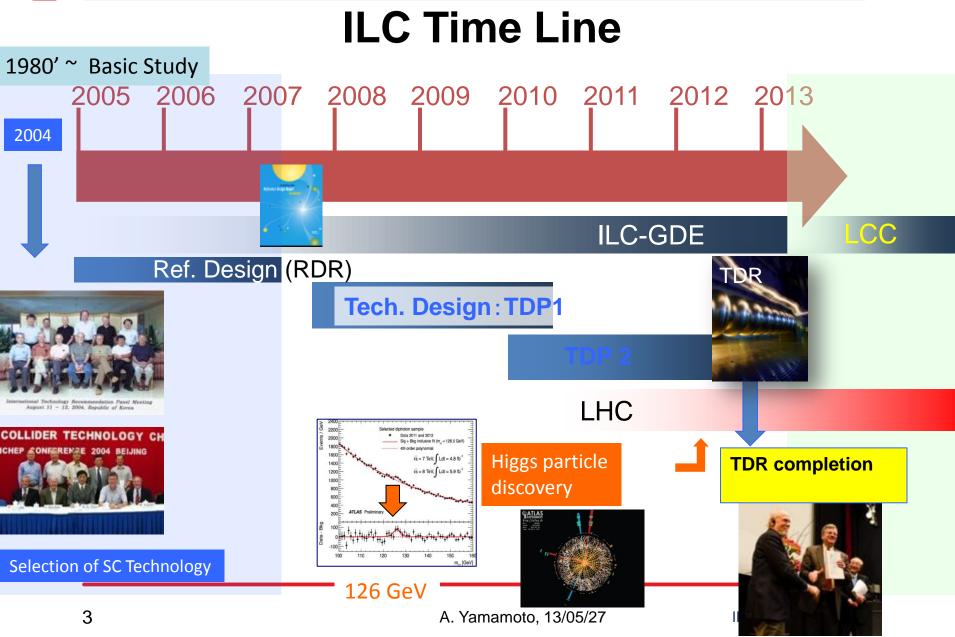
ILC-GDE/KEK in cooperation with M. Ross and N. Walker

A plenary talk at ECFA-LC2013, DESY, May 27, 2013

Outline

<u>ilc</u>

Technical Status reached in TDR

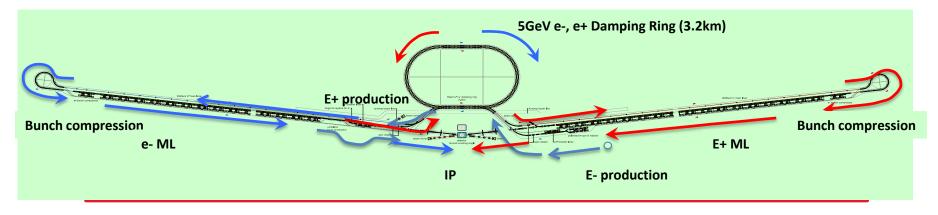

- Design update from Reference Design Report (RDR'07) to Technical Design Report (TDR'12)
- Results from research & development
- Recommendations given by PAC

Further Plan beyond TDR

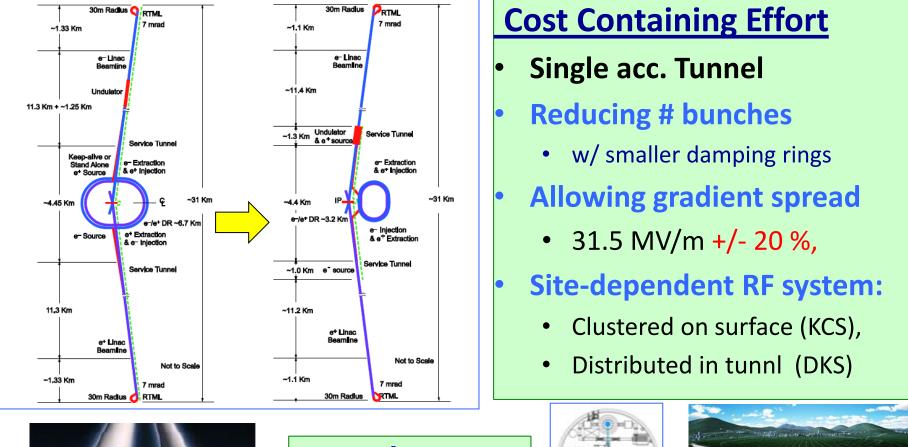
• Further work required for detailed engineering to prepare for realization of the ILC project,

LINEAR COLLIDER COLLABORATION

ILC R&D: Global Collaboration



Requirements from Physics Exp.


- Basic requirements:
- Luminosity : $\int Ldt = 500 \text{ fb}^{-1} \text{ in 4 years}$
- E_{cm} : 200 500 GeV and the ability to scan
- E stability and precision: < 0.1%
- Electron polarization: > 80%
- Extension capability:
- Energy upgrade: 500 → 1,000 GeV

LINEAR COLLIDER COLLABORATION

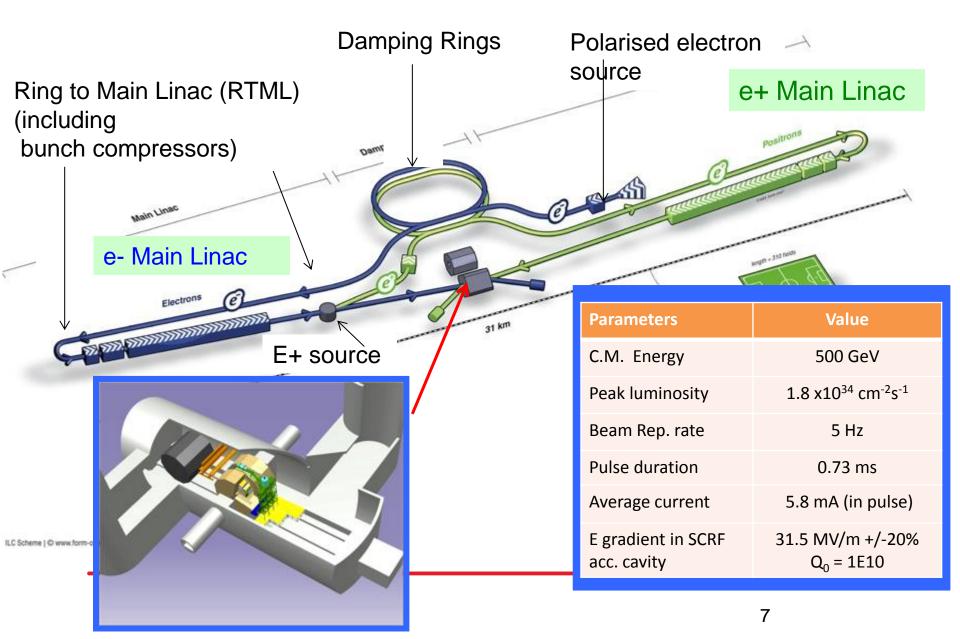
RDR (2007) to TDR (2012)

Flat-land or Mountainous Tunnel Design

Over-moded

waveguide

installed cryomodule


A. Yamamoto, 13/05/27

ILC Technical Status

LINEAR COLLIDER COLLABORATION

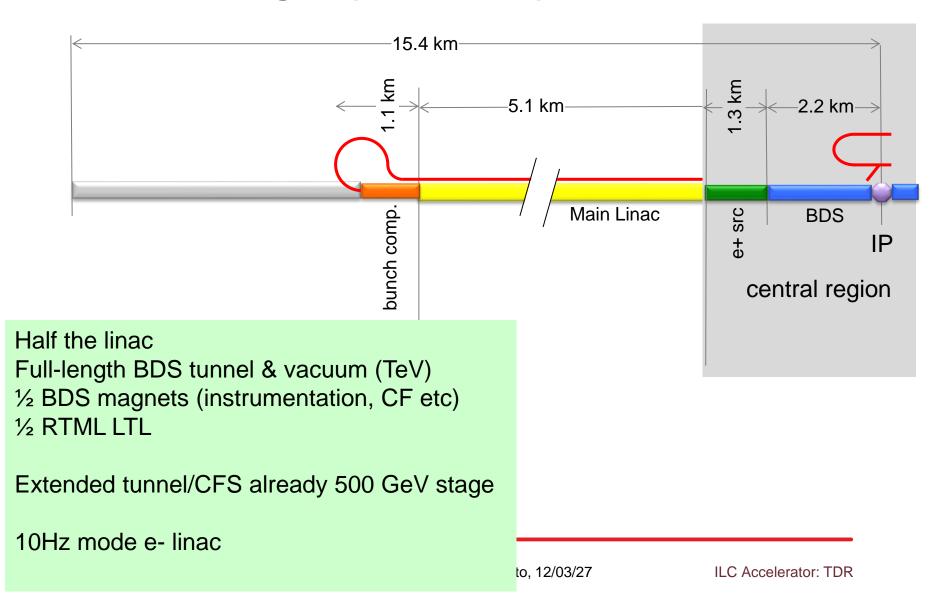
ILC TDR Layout

ILC Published Parameters

Centre-of-mass independent:

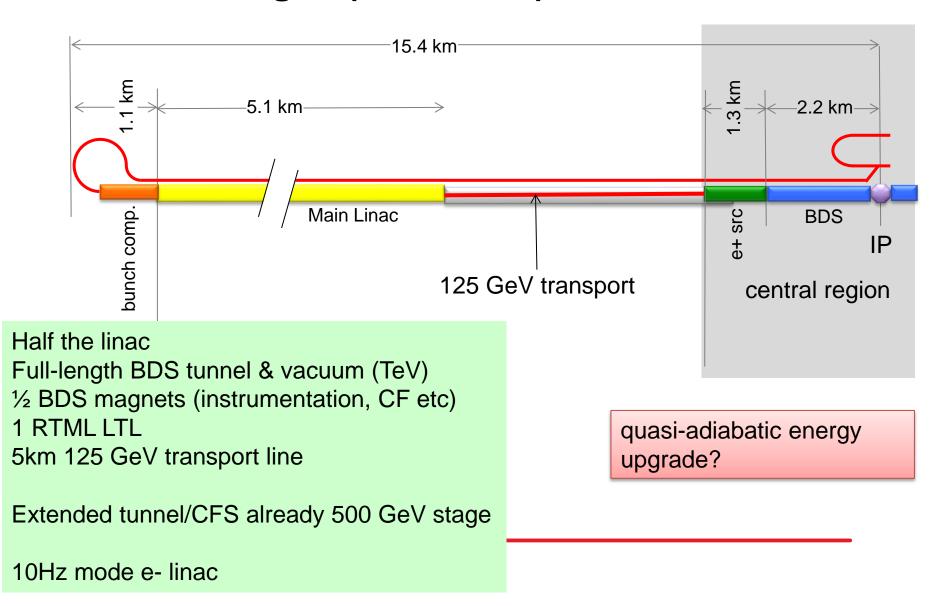
			inosity
Centre-of-mass inde	pendent:		Luminosity Upgrade
Collision rate	Hz	5	
Number of bunches		1312	2625
Bunch population	×10 ¹⁰	2	
Bunch separation	ns	554	366
Pulse current	mA	5.8	8.8
Beam pulse length	ms	730	960
RMS bunch length	mm	0.3	
Horizontal emittance	mm	10	
Vertical emittance	nm	35	
Electron polarisation	%	80	
Positron polarisation	%	30	

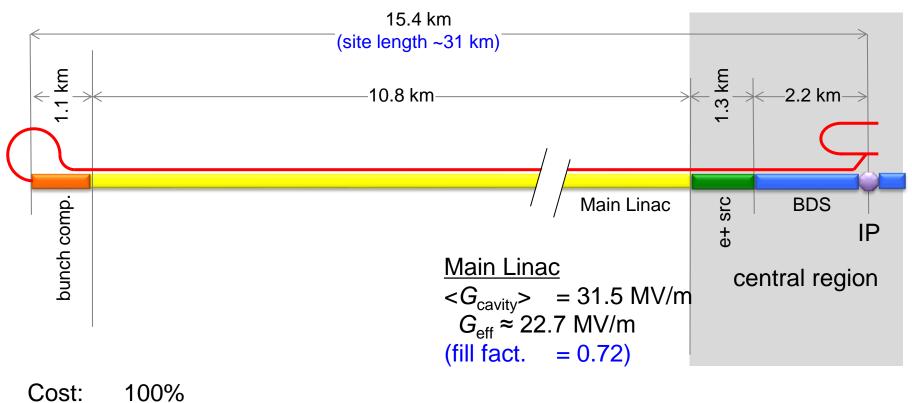
http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D0000000925325


ILC-TDR: Baseline Parameters

Centre-of-mass dependent:		Focus of o	design (a	and cos	t!) effor	t 🔿
Centre-of-mass energy	GeV	200	230	250	350	500
Electron RMS energy spread	%	0.21	0.19	0.19	0.16	0.12
Positron RMS energy spread	%	0.19	0.16	0.15	0.10	0.07
IP horizontal beta function	mm	16	16	12	15	11
IP vertical beta function	mm	0.48	0.48	0.48	0.48	0.48
IP RMS horizontal beam size	nm	904	843	700	662	474
IP RMS veritcal beam size	nm	9.3	8.6	8.3	7.0	5.9
Vertical disruption parameter		20.4	20.4	23.5	21.1	24.6
Enhancement factor		1.83	1.83	1.91	1.84	1.95
Geometric luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.25	0.29	0.36	0.45	0.75
Luminosity	×10 ³⁴ cm ⁻² s ⁻¹	0.50	0.59	0.75	0.93	1.8
% luminosity in top 1% DE/E		92%	90%	84%	79%	63%
Average energy loss		1%	1%	1%	2%	4%
Pairs / BX	×10 ³	41	50	70	89	39
Total pair energy / BX	TeV	24	34	51	108	344

http://ilc-edmsdirect.desy.de/ilc-edmsdirect/item.jsp?edmsid=D0000000925325


250 GeV staged (scenario 1)


250 GeV staged (scenario 2)

TDR 500 GeV Baseline

P_{AC}: 161 MW

Major R&D Efforts in TD Phase

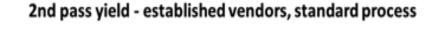
SCRF technology and beam acceleration :

- Cavity Gradient required: 31.5 MV/m
 - <u>ILC SCRF cavity R&D</u>
 - Effort for ~ 7 x Gradient (KEK-TRISTAN, CERN-LEP)
 - Gradient Progress : < 37 MV/m> (Record : 46 MV/m at DESY)
 - System engineering : S1-Global program with global effort

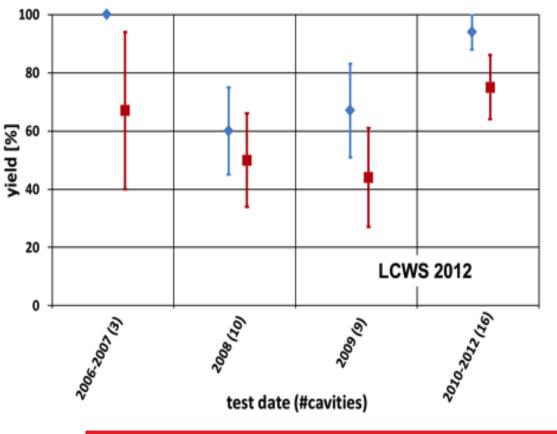
Electron Cloud Mitigation

Nano-beam handling :

- ILC requiring a beam size ~ 6 nm (vertical) and stability ~2nm:
 - Progress in KEK-ATF:
 - achieving ~70 nm (at 1.3 GeV),
 - corresponding to 10 nm (at 250 GeV, ILC)


Global Plan for SCRF R&D

Year	07	200	8	2009	2	010	2011	2012
Phase	TDP-1				TDP-2			
Cavity Gradient in v. test to reach 35 MV/m	→ Yield 50% →					> Yield	90%	
Cavity-string to reach 31.5 MV/m, with one- cryomodule	Global effort for string assembly and test (DESY, FNAL, INFN, KEK)							
System Test with beam acceleration	FLASH (DESY) , NM QB, STF2 (KEK)					L/ASTA (FNAL)		
Preparation for Industrialization	Production Technology R&D							
Communication with industry:	 1st Visit Vendors (2009), Organize Workshop (2010) 2nd visit and communication, Organize 2nd workshop (2011) 3rd communication and study contracted with selected vendors (2011-2012) 							



Progress in SCRF Cavity Gradient

>35 MV/m yield

Production yield: 94 % at > 28 MV/m,

Average gradient: 37.1 MV/m

reached (2012)

A. Yamamoto, 13/05/27

ILC Technical Status

Progress in 1.3 GHz ILC Cavity Production

year	# 9-cell cavities qualified	Capable Lab.	Capable Industry
2006	10	1 DESY	2 ACCEL, ZANON
2011	41	4 DESY, JLAB, FNAL, KEK	4 RI, ZANON, AES, MHI,
2012	(45)	<mark>5</mark> DESY, JLAB, FNAL, KEK, Cornell	5 RI, ZANON, AES, MHI, <u>Hitachi</u>

Progress in EXFEL (800 cavity construction as of 2012/10):

(courtesy by D. Reschke: the 2nd EP at DESY)

- RI: 4 reference cavities with Eacc > 28 MV/m, (~ 39 MV/m max.)
- Zanon: 3 reference cavities with Eacc > 30 MV/m (~ 35 MV/m max.)

Accelerator System Tests 2009 ~

FLASH (DESY)

• TDP focus

- 7 CM \rightarrow 1.2 GeV beam
- photon user facility

NML (FNAL)

Under construction

- Up to 6 cryomodules
- Operation: end 2012

• (3 CM)

Full systems integration testing

STF (KEK)

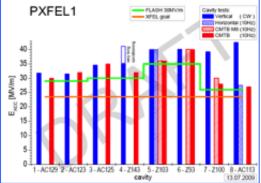
• "Quantum Beam" experiment 2011

- 1 CM with beam 2013
- (2 CM 2015)

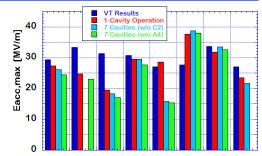
SCRF Beam Acceleration Test

DESY: FLASH

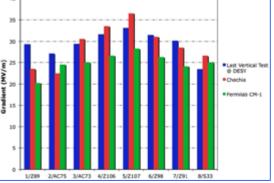
- SRF-CM string + Beam,
 - ACC7/PXFEL1 < 32 MV/m >
- 9 mA beam, 2009
- 800μs, 4.5mA beam, 2012

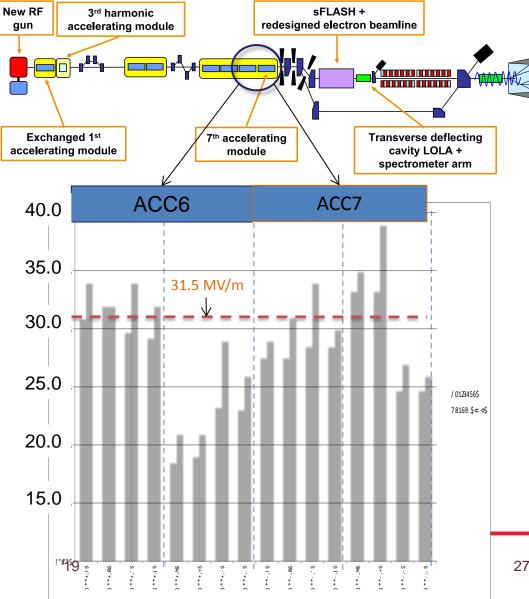

KEK: STF

- S1-Global: complete, 2010
 - Cavity string : < 26 MV/m>
- Quantum Beam : 6.7 mA, 1 ms,
- CM1 & beam, 2014 ~2015


FNAL: NML/ASTA

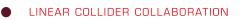
- CM1 test complete
- CM2 operation, in 2013
- CM2 + Beam, 2013 ~ 2014





A. Yamamoto, 13/05/27

ILC Technical Status



Operation with Gradient Spread

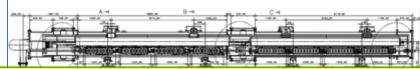
N. Walker

- From single RF source
- now ILC baseline
 - Also expected for XFEL
- Specifically: achieving constant gradients <u>for</u> <u>each individual cavity</u> during beam pulse
- to within few percent
- close to gradient limits

27/05/2013 ECFA LC 2013 - DESY, Hamburg

S1-Global hosted at KEK:

Global cooperation to demonstrate SCRF system


DESY, FNAL, Jan., 2010

DESY, Sept. 2010

Successful global cooperation hosted by KEK with variety of cavity design

ir

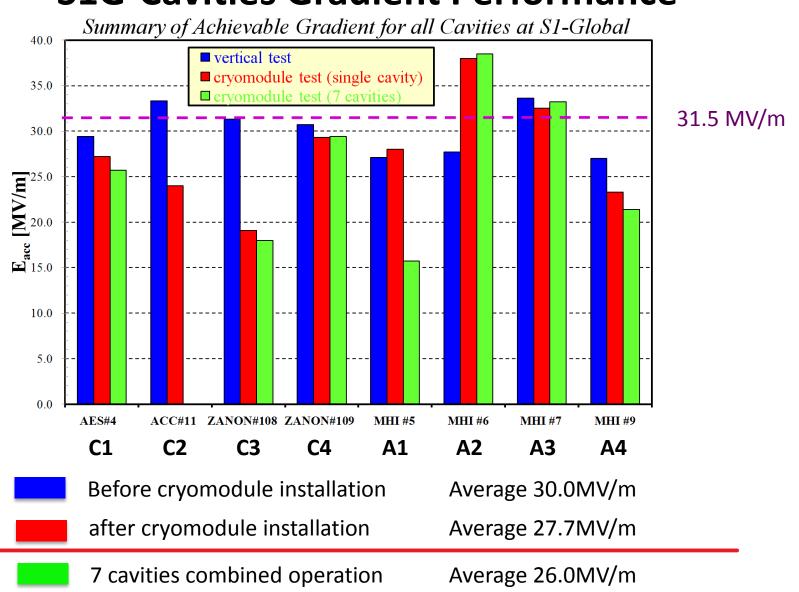
ILC Technical Status

A. Yamamoto, 13/05/27

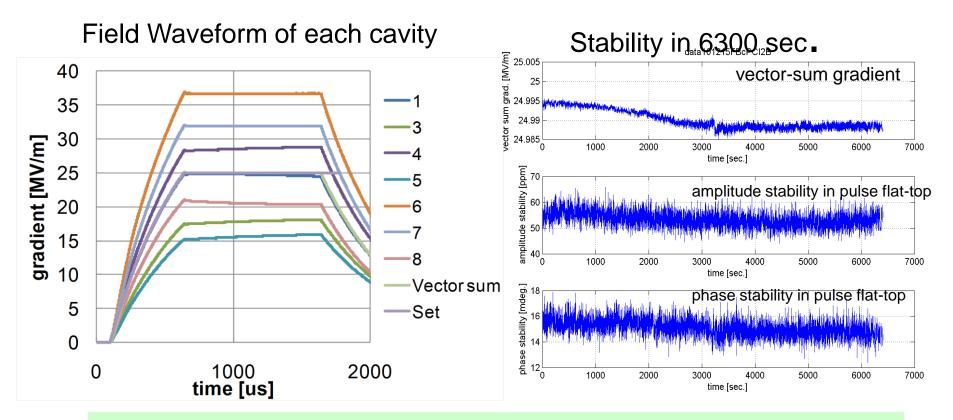
Content of Cavity and Tuner Assembly

Slide-jack tuner at KEK **EXFEL** tuner

Blade Tuner (originated by INFN)

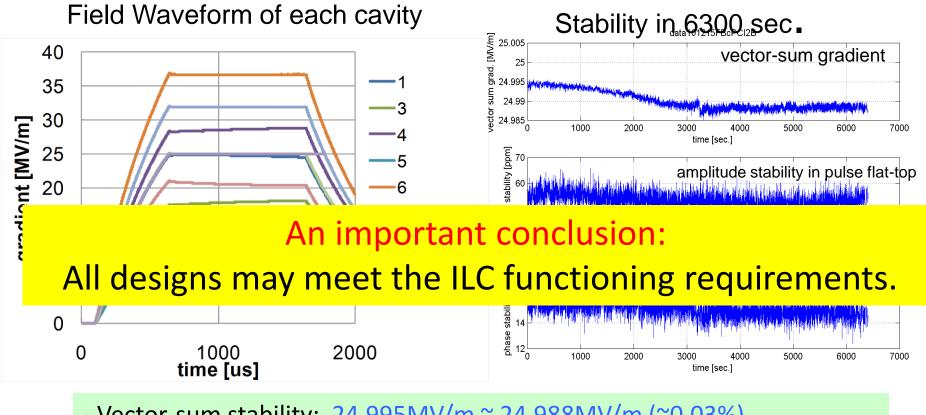

An important conclusion: These designs may meet the ILC functioning requirements.

S1G-Cavities Gradient Performance


E. Kako, H. Hayano

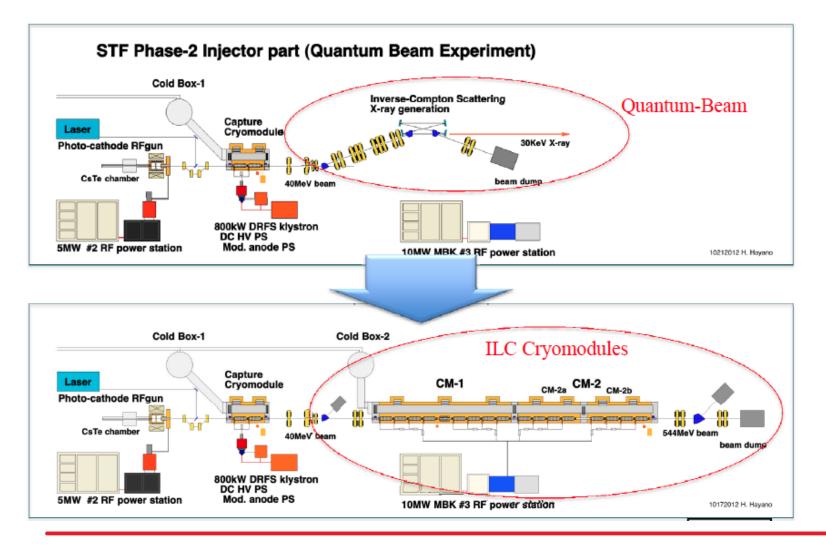
ΠЬ

7-cavity operation by digital LLRF -- if

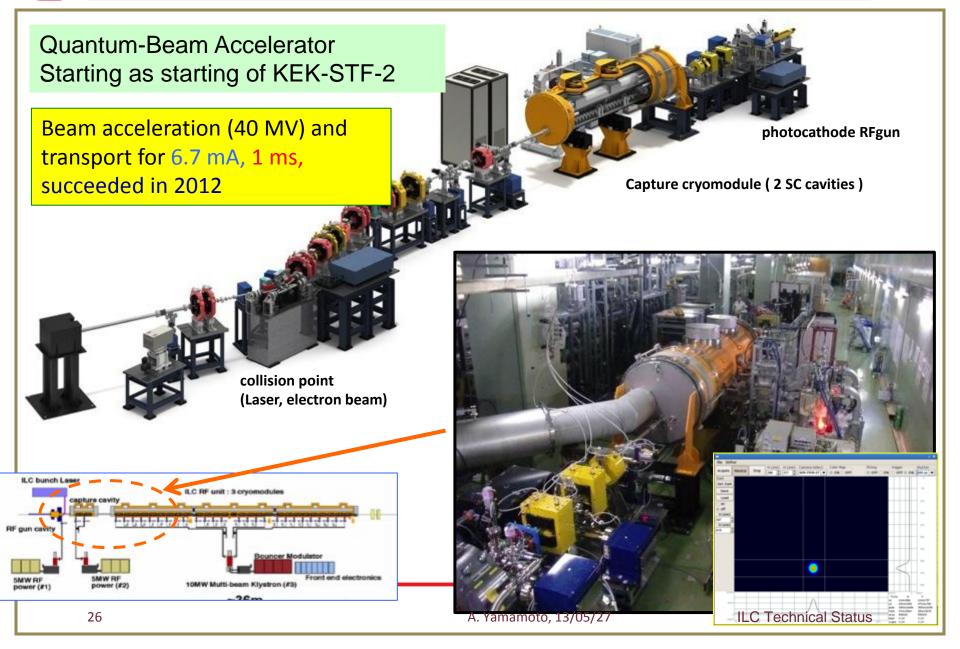

LLRF stability study with 7 cavities operation at 25MV/m

- Vector-sum stability: 24.995MV/m ~ 24.988MV/m (~0.03%)
- Amplitude stability in pulse flat-top: < 60ppm=0.006%rms
- Phase stability in pulse flat-top: < 0.0017 degree.rms

7-cavity operation by digital LLRF


LLRF stability study with 7 cavities operation at 25MV/m

- Vector-sum stability: 24.995MV/m ~ 24.988MV/m (~0.03%)
- Amplitude stability in pulse flat-top: < 60ppm=0.006%rms
- Phase stability in pulse flat-top: < 0.0017 degree.rms



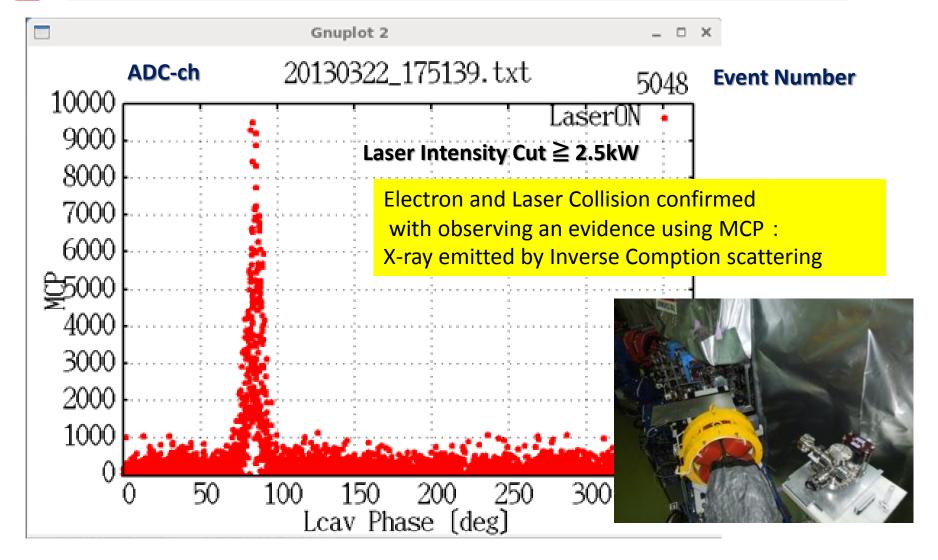
STF: Quantum Beam → ILC full-cryomodule Test

ILC beam condition demonstrated at QB

Quantum Beam Program: Demonstrating Compact X-ray source with Inverse Compton Scattering Using SCRF technology

Beam Dump

-X-ray


amamoto, 13/05/27

D

© Rei.Hori

X-ray observed (w/ MCP, 22nd Mar.2013)

INEAR COLLIDER Global Cooperation for ILC Accelerator Beam Demonstration

TTF/FLASH (DESY) ~1 GeV ILC-like beam ILC RF unit (* lower gradient)

STF (KEK) operation/construction ILC Cryomodule test : S1-Gloabal Quantum Beam experiment

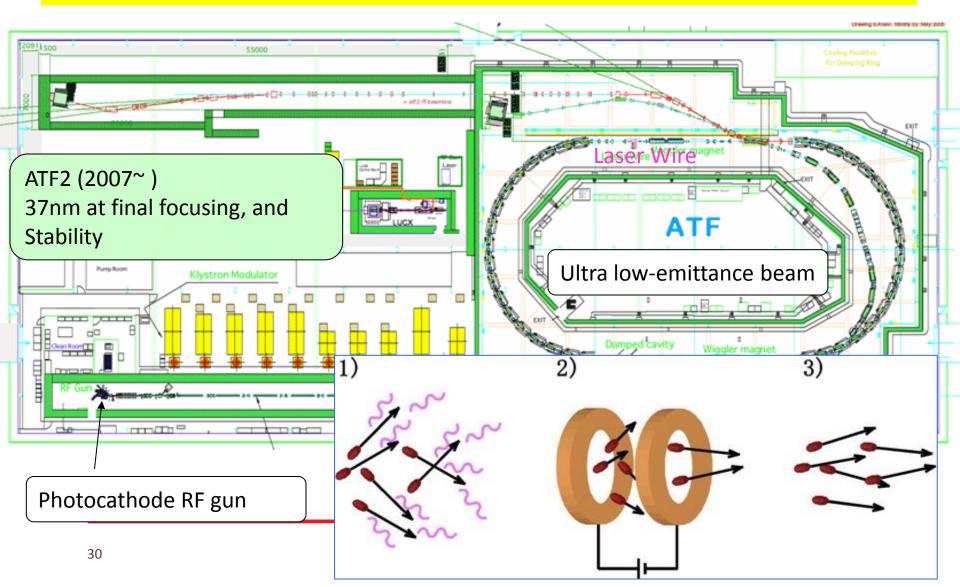
Cornell

<u>CesrT</u>A (Cornell) electron cloud low emittance

DA^fNE (INFN Frascati) kicker development electron cloud

ATF & ATF2 (KEK) ultra-low emittance Final Focus optics KEKB electron-cloud A. Yamamoto, 13/05/27

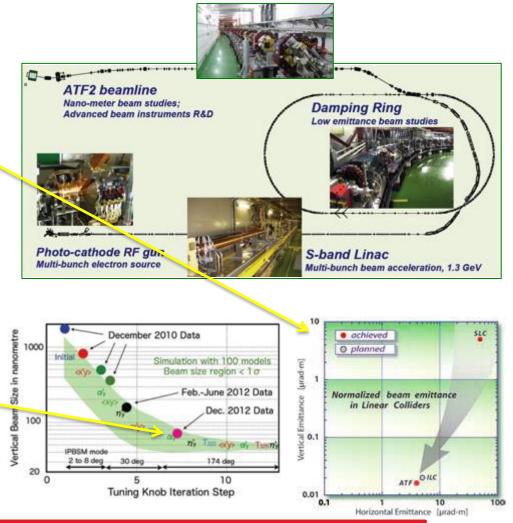
NML facility ILC RF unit test Under construction


ILC Technical Status

KEK-ATF Effort:

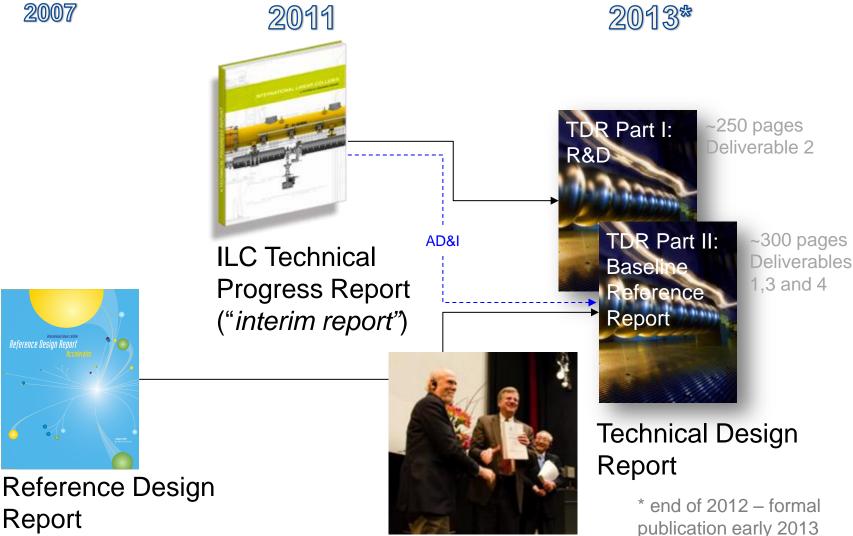
Ultra low emittance and nano-beam handling at final focusing

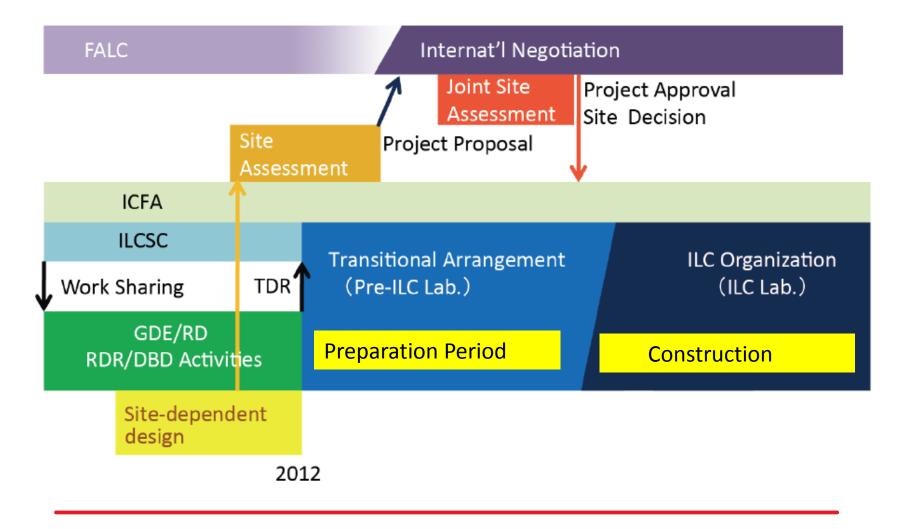
ilc



KEK-ATF: Progress

Ultra-small beam


- Low emittance : KEK-ATF
 - Achieved the ILC goal (2004).
- Small vertical beam size : KEK ATF2
 - Goal = 37 nm,
 - 160 nm (spring?, 2012)
 - ~70 nm (Dec. 2012) at low beam current



Technical Design Report Completed

ILC Road Map

Outline

<u>ilc</u>

Technical Status reached in TDR

- Design update from Reference Design Report (RDR'07) to Technical Design Report (TDR'12)
- Results from research & development
- Recommendations given by PAC

Further Plan beyond TDR

• Further work required for detailed engineering to prepare for realization of the ILC project,

Report given by PAC

<u>REPORT OF THE NINTH MEETING OF THE ILC PROJECT ADVISORY</u> <u>COMMITTEE (PAC)</u>

13/14 December 2012; KEK

Augmented Committee: Jon Bagger, Johns Hopkins; Jia-Er Chen, IHEP/Beijing; Stefan Choroba, DESY; Michel Davier, LAL; Lyn Evans, CERN (Chair); Paul Grannis, Stony Brook; Lutz Lilje, DESY; Tomio Kobayashi, Tokyo; Masao Kuriki, Hiroshima; Wolf-Dietrich Moeller, DESY; Katsunobu Oide, KEK; Robert Orr, Toronto; Roy Rubinstein, Fermilab (Secretary); John Seeman, SLAC; Hans Weise, DESY

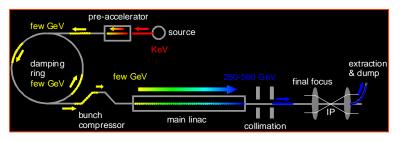
Apologies: Enrique Fernandez, Barcelona; Stuart Henderson, Fermilab; John Mammosser, JLab; Raj Pillay, TIFR

PAC Summary and Recommendations (1/3)

- The PAC was very impressed by the GDE presentations to the Committee, and supports the TDR. What follows are recommendations by the Committee on items that need to be addressed in the future; however, the <u>PAC recommends no changes to the TDR.</u>
- The lack of progress towards the <u>37 nm ATF2 IP goal is a concern</u>. Several issues have already been resolved, and the currently scheduled modifications should lead to significant progress towards the goal.
- Sufficient progress has been made on SCRF that the TDR sections on <u>cavity gradient can</u> be defended. The desired gradient is well within reach, and several manufactures have been validated. <u>XFEL</u> industrialization will give <u>valuable information</u>.
- 4. The Japanese power coupler appears to be a good design, and should be pursued further to be adaptable to the TESLA-type cavity (having the smaller cold-end interface flange).
- 5. It would be valuable to obtain more operational statistics on the Marx modulator.

PAC Summary and Recommendations (2/3)

- The Klystron Cluster Scheme (KCS) appears to solve several important problems, but several issues remain currently open:
 - a) More test time of the system is needed
 - b) It is not clear how well the current LLRF system will operate with KCS
 - c) Can the system be aligned well enough that no other modes are excited?
 - d) The effects of a fault in the power line should be studied further to ensure that no damage will be caused by the high power levels involved.
 - e) A coupler breakdown in KCS could lead to availability issues.
 - f) It is not clear how precise adjustment of the coaxial tap-offs (CTOs) can be achieved and maintained at high power operation to ensure the right coupling ratio and matching.
- 7. More evaluation is needed of cavity tuner designs.
- 8. Alternate cavity designs producing higher gradients could be valuable for future upgrades, but the current design is appropriate for a linear collider proposal.
- 9. Are there any advantages to having a 1.9 K liquid helium system?


PAC Summary and Recommendations (3/3)

10. More R&D appears to be needed on the positron source:

- A technical design of the rotating target should be established; it has to be compatible with ultra-high vacuum; enable fast rotation; and be robust to radiation damage.
- b) The <u>flux concentrator as a matching device should be demonstrated</u>
- c) A realistic scenario of installation and path-length adjustment for positron operation should be established.
- 11. The overall ILC cost was reduced a few years ago by shortening the damping ring from 6 km to 3 km. To keep the luminosity constant the beam sizes etc. at the IP were reduced. Thus, tolerances in several parts of the system became tighter. The recommendation is to complete a new overall tolerance study.
- 12. The IDAG presentation to the PAC meeting summarizes the recommendations on the ILC detectors, with an additional PAC comment below.
- 13. The two ILC detector designs have different L*s (distance to the IP from 1st quad). These were requested by the detector groups. If these two L*s were made the same, the retuning time between push-pull detector set-ups could be made shorter.

Further R&D/Engineering Study required

- Positron source: Rotating target, alternate solution/backup
- Damping ring: Undulators, 650 MHz SCRF
- **RTML**: Quadrupole magnet with HTS?
- ML: Cavity integration, CM design, HLRF demonstration...
- BDS: Final focusing, alignment w/ tighter tolerance
- Beam Dynamics: Accurate lattice design based on the specific site
- CFS: Site specific work including Central Campus design and others
- General engineering: such as drawing coordination (rules)

Positron Source

- Current design: Rotating target w/ vacuum sealing,
 - LLNL target and capture R&D: need to restart
- Alternative options, or conventional design as backup?,
 - Any valuable candidates?
- Short-period undulator,
 - RHUL and/or ANL could do it?

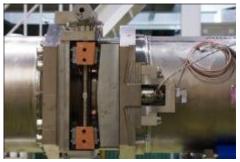
Main Linac

- Cavity gradient
 - Surface process: Vertical EP w/ He-tank, and further optimization
 - Cavity material (RRR, grain-size), shape,
 - Diagnostics and repair technology
- Cavity integration
 - Coupler, tuner, and He-tank to be revisited for further efficient and costeffective production/industrialization
- Cryomodule assembly
 - Mitigation of gradient degradation during the CM assembly process
 - Further engineering work for the best optimum CM design
 - Pre-Assembly of power distribution wave-guide) w/ CM, on surface
- Cryogenics
 - Demonstration of cooling performance with tilted CM installation to adapt possible tunnel slop (~0.5 %)
 - Operation temperature down to 1.9 K (instead of 2.0 K)
- HLRF/LLRF
 - More statics for the Marx generator operation loaded by Klystron

Cavities, Tuners, Couplers in S1-G Cryomodule

TESLA Cavity (DESY/FNAL)

Blade Tuner (INFN/FNAL)


Saclay Tuner (DESY)

TTF-III Coupler (DESY/FNAL/SLAC)

Tesla-like Cavity (KEK)

Slide-Jack Tuner (KEK)

STF-II Coupler (KEK)

BDS and Beam Dynamics

• BDS

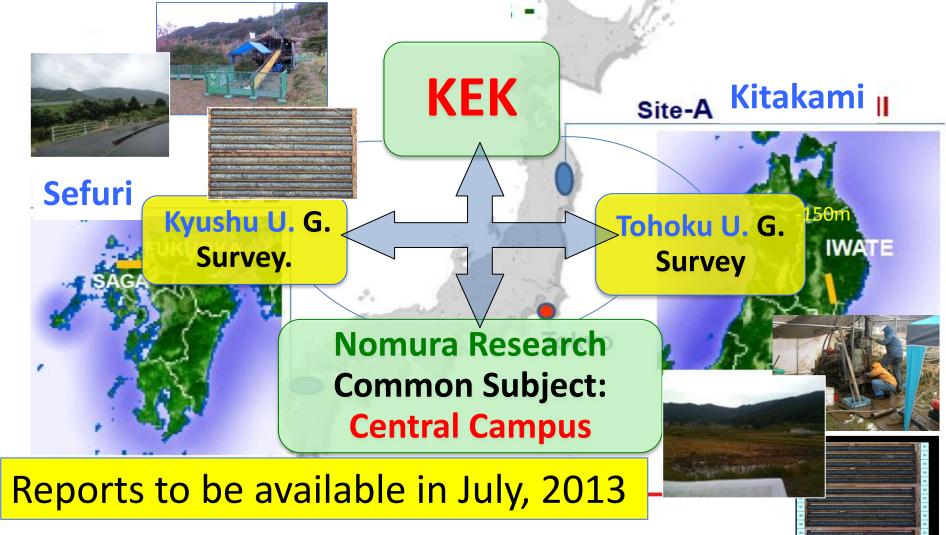
- Final focusing with superconducting quadrupoles
- Tighter tolerance to achieve nominal luminosity with reduced beam-power

Beam Dynamics

- Re-evaluation of the beam dynamics with matching of the damping ring circumference and main linac length.
- Re-evaluation of acceptable tolerances

CFS and General Engineering

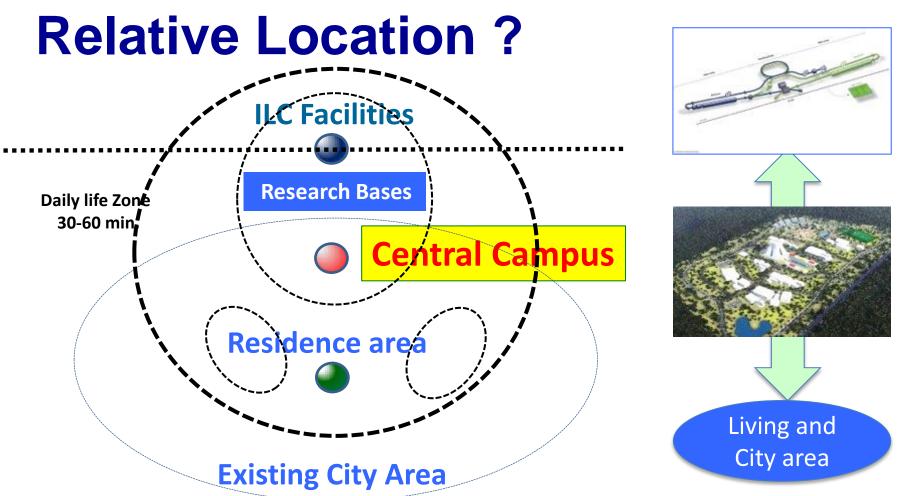
- Site specific CFS works after the site selection established
 - Access/approach to tunnel and transportation
 - Tunnel slope to be optimized in relation with cryogenics and water handling


General Engineering

- Such as drawing coordination rules
 - It was once fixed to writer electron ML at left and positron ML right
 - » In this way, CM lower/right and RFs upper/left in case of CAMABOKO tunnel in mountain site.

Geological Survey and Common-Subject Study, going on, in japan

Study of a Common Subject: the ILC Central-Campus Design


- Functions?:
- As the headquarters and a hub-laboratory
- Location?:
- with adequate distance to the ILC facility and to publiccity/living area
- How many Persons to work/live ?:
- as employees, sub-contractors, scientific/technical user, families, and others,
- to dynamically change according to the project stages,
- Which kind of facilities and buildings ?:
- For facilities/building, and area/environment design

• Headquaters' function:

İİL

- Center for Research and Administration including international cooperation
- Offices for employees and visitors/users
- Rooms for Conferences/seminars/lectures
- Hub-laboratory's function:
 - Technical laboratories
 - SCRF assembly and test stations, as an example
 - (Detector main assembly may be located near ILC main-site)
- Residence function
 - For visitors in some fraction

A concept: Relative distance from main campus, for moving time: ≤ ~ 30 min.

An Assumption for Numbers of Persons at ILC (whole) Laboratory

(more than the number in TDR)

	Under construction Peak (8Th year.)	Operation start (<mark>11</mark> Th year.)	In operation (<mark>15</mark> Th year.)	In operation (<mark>20</mark> Th year.)
Laboratory Staffs #1	1,600	1,200	1,200	1,200
Experiment participants #2	500	700	800	1,000
Laboratory Supporters #3	300	300	400	500
Total	2,400	2,200	2,400	2,700

#1: including the regular/permanent staff and temporary staff (Post-Doc),
#2: including researchers, engineers and students for two experiments,
#3: including subcontracted specialist to support acc. & exp. activities

Estimate Breakdown of the Numbers of Persons

				Co	nstruct	ion peri	iod				Operational Period									
Annual	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Fiscal year	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Researcher, Engineer, Office worker Subtotal	500	600	800	1,203	1,605	2,049	2,267	2,388	2,282	2,362	2,200	2,251	2,303	2,358	2,415	2,476	2,540	2,606	2,677	2,75
(1) ILC Laboratory staff (parmanent+temporary)	500	600	800	1,000	1,200	1,400	1,600	1,600	1,400	1,400	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,200	1,20
①Permanent staff	400	500	600	700	800	900	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,00
-Research staff	200	250	300	350	400		500	500	500	500	500	500	500	500	500	500	500	500	500	50
−Technical staff	140	175	210	245	280	315	350	350	350	350	350	350	350	350	350	350	350	350	350	35
-Management staff	60	75	90	105	120	135	150	150	150	150	150	150	150	150	150	150	150	150	150	15
②Temporary staff (postdoctoral)	100	100	200	300	400	500	600	600	400	400	200	200	200	200	200	200	200	200	200	20
(2) Experiment participant Subtotal				203	405	649	667	788	882	962	1,000	1,051	1,103	1,158	1,215	1,276	1,340	1,406	1,477	1,5
①Reseacher				91	182	292	300	354	397	433	450	473	496	521	547	574	603	633	665	69
②Student (graduaite student)				71	142	227	234	276	309	337	350	368	386	405	425	447	469	492	517	54
③Experiment supporter				41	81	130	133	158	176	192	200	210	221	232	243	255	268	281	295	31
Construction, Maintenance worker Subtotal	2,730	3,835	3,180	3,240	2,630	2,550	2,610	2,610	2,550	2,360	360	360	360	360	360	360	360	360	360	30
(3) Construction worker (Including supervisor)	2,580	3,655	2,940	2,940	2,270	2,130	2,130	2,130	2,130	2,000	0	0	0	0	0	0	0	0	0	
(4) Maintenance outsourcing workers	150	180	240	300	360	420	480	480	420	360	360	360	360	360	360	360	360	360	360	36
Incidental family Subtotal	782	956	1,215	1,571	1,927	2,303	2,570	2,668	2,580	2,481	2,536	2,599	2,662	2,728	2,996	2,866	2,940	3,015	3,094	3,17
(1) Family of ILC staff	710	870	1,100	1,330	1,560	1,790	2,020	2,050	1,936	1,818	1,844	1,871	1,897	1,923	1,949	1,975	2,001	2,027	2,053	2,0
(Parmanent staff with family)	320	400	480	560	640	720	800	800	800	800	800	800	800	800	800	800	800	800	800	8(
(Temporary staff with family)	35	35	70	105	140	175	210	210	140	70	70	70	70	70	70	70	70	70	70	
(2) Family of experiment participants	0	0	0	97	194	311	320	384	436	482	509	542	577	614	853	695	740	787	837	8
Experiment participants with family	0	0	0	49	97	156	160	189	212	231	240	252	265	278	292	306	322	338	355	37
(3) Family of construction worker	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
(4) Family of maintenance outsourcing workers	72	86	115	144	173	202	230	234	208	181	183	186	188	191	194	196	199	201	204	20
Total	4,012	5,391	5,195	6,014	6,162	6,902	7,447	7,666	7,412	7,203	5,096	5,210	5,325	5,446	5,771	5,702	5,840	5,981	6,131	6,2

(major fraction of persons having working spaces there)

General Plan for ILC Central Campus

Major facilities:

- Offices
- Laboratory
- Meeting rooms
- Visitor's accommodation
- General services
- Parking
- Utility plant, etc.

Assuming:

~ 100,000 m² in total floor area

	Assuming facilities	
Classification	Facilities	Area(m²)
Offices	Research office University & Institute	35,000
laboratory facilities	Control center Assembly hall Technology development hall	33,000
meeting and exchange	Lecture hall Meeting room	3,500
Accommodation	Dormitory Visitor accommodation	23,000
Service facilities	Reception, Users office Library, exhibition hall Cafeteria, Convenient store Health care & Training center	3,200
Transportation	Parking, Bus Terminal	-
Energy plant, etc.		1,100
Total		99,800

Area: ~ 30,000 m² ~ 40,000 m² ~ 80,000 m² (Floor area: commonly ~10,000 m²)

To be more discussed in the ADI/CFS session

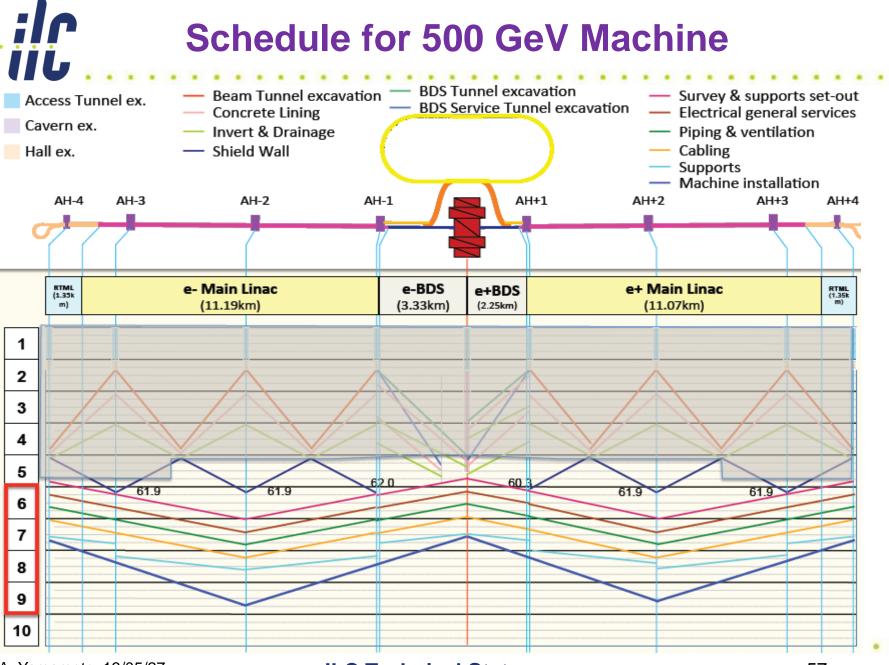
Summary

Progress and Status:

- TDR completed
- Technical- and Cost-Review proceeded
- ILC can be built from a technical view point, based on the TDR technology.

Further Technical Process Required:

- Detailed engineering, system demonstration, and preparation for industrialization
- Global participation and human-resource are critically required to prepare for the project realization.


backup

ILC Time Scale required

	12	13	14	15	16	17	18	19	20	21	22	23	24	25
ILC TDP/TDR														
ATF-II	Beam t	test												
ATF-future			Exten	ded pro	gram									
STF														
QB	Beam test													
STF2- CM1+CM2a			Beam test					After g	gettin	g Gree	en Sig	n.		
STF-Future				Exten	ded pro	gram		• Prepa	aratio	n for (contra	act: '	~ <mark>2</mark> ye	ars
CFS								 Cons 	tructi	on pe	riod :	~	' 10 ye	ears
Civil eng.								• If the	aroo	n cian	giver	in 5 v	voarc	
Site-survey									•	ealize	•		years	,

Schedule for 500 GeV Machine

A. Yamamoto, 13/05/27

ILC Technical Status

57

ILC-TDR evaluation (2013-2)

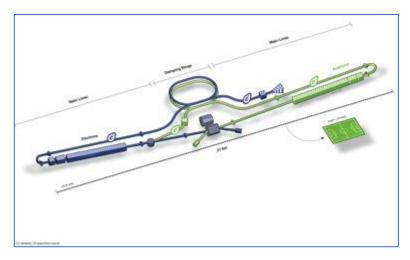
	M&S Value (Ratio)	M&S Value (GILCU)	M&S Value converted (GJY)	M&S Prem.:	Labor (M person-hr)	Labor Prem.:
RDR-2007	1	6.31 ¹⁾			24.4	
RDR-2012 (15% inflation)	1.15	7.27 1)			24.4	
TDR-2012 average for 3 region	1.23	7.78 ¹⁾			22.6	
TDR- (Asia) mountain site	1.26	7.98 ¹⁾	830 ²⁾	26 %	22.9	24 %

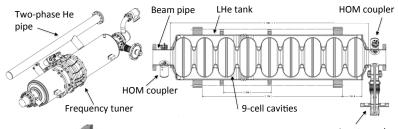
1) Estimated by using PPP (purchasing power parity) methodology established by OECD

2) Conversion to Japanese Yen: using currency exchange rates

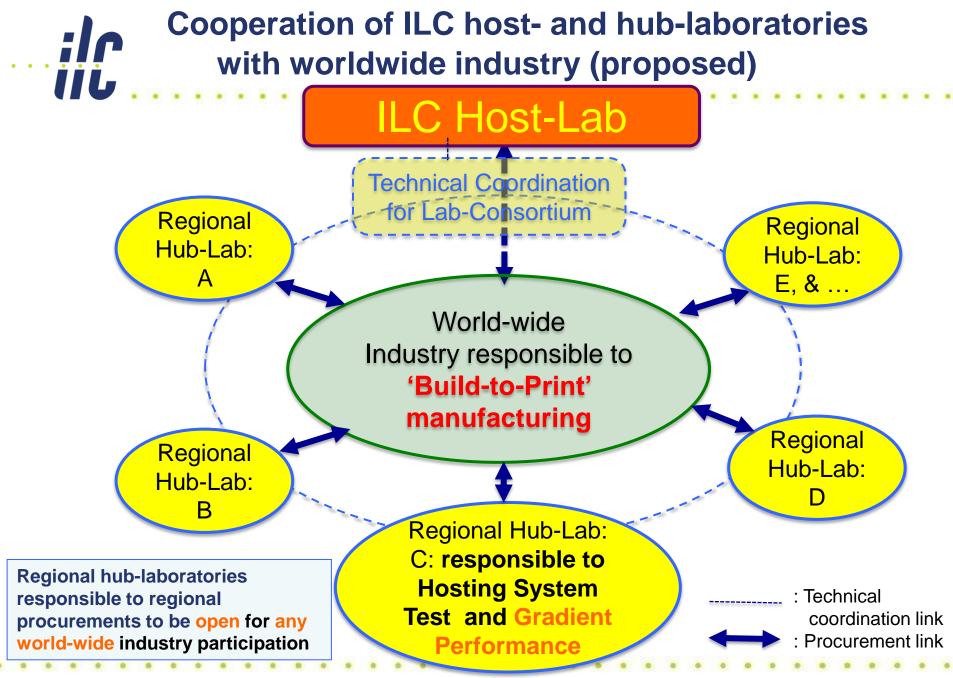
- assuming a model with 100JYen/USD, 115 Jyen/Ero

* Budget not incluced, above :

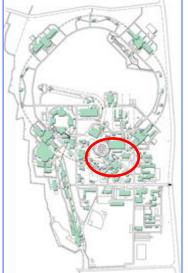

- Project preparation, Operation (0.39GILCU, 850 FTE) 、 Detectors (~ 2 x 0.4 GILCU


Base for Uncertainty Estimates

	Value basis	Premium
1	COTS or equivalent	5%
2	Procurement	8%
3	Vendor quote	10%
4	Industrial Study, mass production	20%
5	Engineering estimate: conventional technology	15%
6	Engineering estimate: R&D needed	30%


SCRF Industrialization required

Parameters	Value
C.M. Energy	500 GeV
Peak luminosity	1.5 x10 ³⁴ cm ⁻² s ⁻¹
Beam Rep. rate	5 Hz
Pulse duration	0.73 ms
Average current	5.8 mA (in pulse)
Av. field gradient	31.5 MV/m +/-20% Q ₀ = 1E10
# 9-cell cavity	16024 (x 1.1)
# cryomodule	1,855
# Klystron	~400

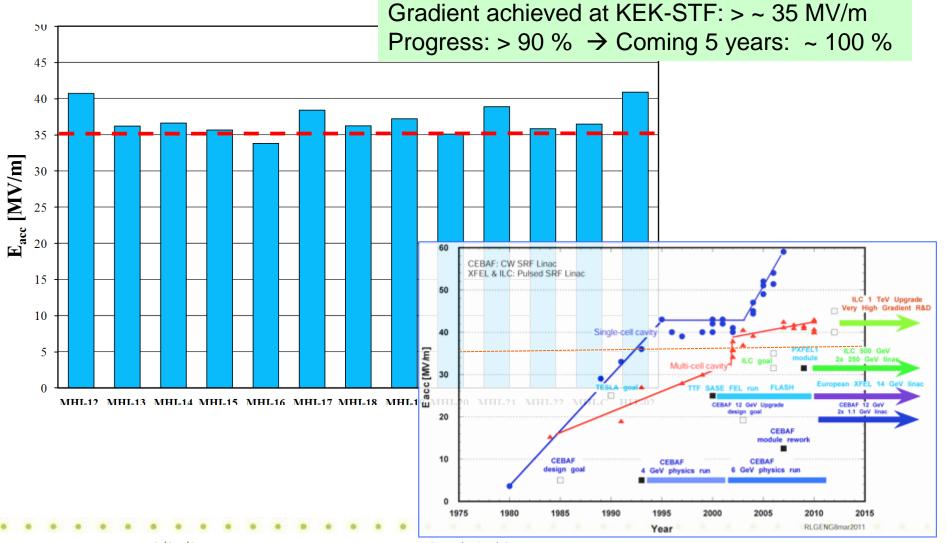

A. Yamamoto, 13/05/27

ILC Technical Status

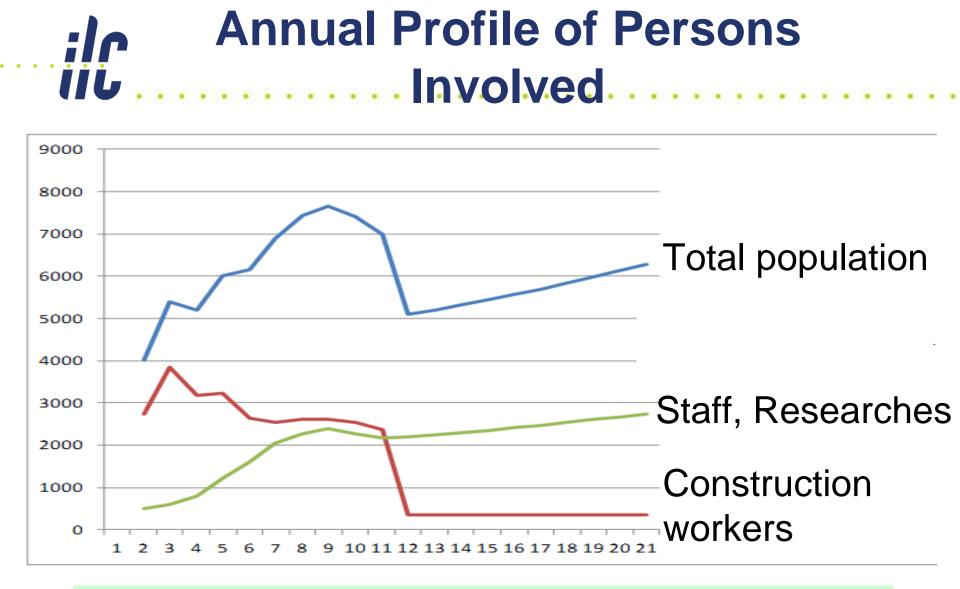
KEK' Own Effort for Industrialization

best cost-effective fabrication technology

A. Yamamoto, 13/05/27


ILC Technical Status

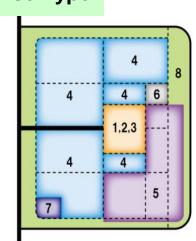
KEK is preparing for SCRF Industrial technology R&Ds to provide the facility and to cooperate with industry in coming years.



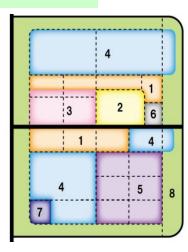
Further Effort for Gradient for Effective Perfromance/cost

ILC Technical Status

- 5,100 people (11 years) ILC start of operations
- Foreigner's fraction, assumed to be ~ 50 %


Social infrastructure conditions of ILC central campus

Infrastructur e		Requirements								
Electric Power	•	Required Electric capacity: about 10,000kwh (26ha: Site area)								
Traffic	•	Traffic base reinforcement: Improvement of international airport Public Transport reinforcement: between airport, nearest station ~ mpus								
Water Supply	•	Living environment	On- Campus	Off-Campus						
Waste	•	infrastructure								
Infrastructure		Childcare, Education	○ (Nursery)	○(International School)						
development		Medical care, Healthcare	△(Healthcare office)	୍(Hospital, Drugstore)						
		Life Support	○(Users Office)	ः(Regional Service)						
		Finance, Settlement	△(ATM, UO-support)	୍(Bank, Insurance)						
		Shopping, Eating	△(Café ,Stand)	ः(Super, Restaurant)						
		Culture, Art, Information	△(UO-support)	○(Hall, Religion relation)						
		Recreation, Sport	△(Jim, Swimming Pool)	○(Regional Service) 65						


Sumption of the Building area and Site area

Function	Facilities		Floor area	High-	rise type	Low	-rise type	
FUNCTION	Facilities		Gross (m²)	Stories	Area (m²)	Stories	Area(m²)	
		-	18,000					
	Research Building	-	9,000	1 building	12,850	3 stories	38,550	
■Research function		-	9,450	16-stories	12,850	3 stories		
Function	Administration building	-	2,100					
T directori	Facility	Number	25,000					
	-		5,000	1 floor	110,000	1 story	110,000	
	Control center	1	3,000					
- O f	Lecture hall	1	1,500					
Conference		1	600	1 building	1,300	1 story	13,000	
function	Meeting	2	900	16-stories				
	Visitor accommodation	4 300	900 27,000					
Residence function	Guest house	50	7,500	3 stories	34,500	3 stories	34,500	
		<u> </u>	375					
	Reception facility Exhibition facilities	I	900					
	Library center		450	1 building				
	Cafeteria	1	1,300					
Service function	Medical care room		1,500	16-stories	2,008	1 story	20,083	
	Child care facility		600		1 Story	20,000		
	Recreation · Sport		750					
	Users service center	1	1,000					
	Convenience shop	•••••••	500					
■Traffic function	Parking tower		3,000	_	3,000	_	3,000	
	Electric room	1	200		-,		-,	
■Supply function	Machine room	1	700	1 story	3,667	1 story	3,667	
	Disaster control room	1	200		- ,		_,	
Total			120,075		167,325		222,800	
Green area	Park, Open space, Green belt	25.0 %	25%		79,226		105,492	
Outer road	Road	20.0 %	20%		63,381		84,394	
Adjust pond		2.2 %	2.2%		6,972		9,283	
Site area					316,903		421,970	
66				1	Around 32ha		Around 42ha	

Fige study : Zoning and Facility Layout High-Rise Type

Flatter Type

Zoning

Layout Plan

Image of ILC Central Campus, Suggested

Model plan of assuming the site area 80ha

Residence in campus The main building and central open space as the core of the Campus Assembly Facilities for various Test, R&D

More detail will be discussed during this workshop