

Manipulating Damping Ring RF Frequency to Compensate Path Length Differences

ECFA Workshop May 2013 David Rubin

- Anticipate ±1m path length errors over length of ILC (see Ewan Paterson's talk)
- Damping rings
 - Errors in circumference < 4mm are corrected with 100m long chicane

- 1. Circumference = 3238.68m, 710.22m straights
- 2. \sim 6 phase trombone cells
- 3. $54 2.1 \text{ m} \log \text{ wigglers}$ wiggler period = 30cm 14-poles P = 1.51 T (z = 22.0 mg)

B = 1.51 T (
$$\tau_x$$
=23.9ms)

$$B = 1.81 \text{ T} (\tau_x = 17.5 \text{ ms})$$

B = 2.16 T (
$$\tau_x$$
=12.9ms)

4. Space for 16 RF cavities

Cryostats for upper and lower positron rings are interleaved

- Accumulated errors ~ ±1m?
 - Compensated by shifting frequency of damping ring RF for a fraction of the circulation time (E. PATERSON)
- Damping ring operation background
 - 5Hz and 10Hz operating modes
 - 5Hz
 - Circulation time in DR 200ms (19k Turns)
 - Damping time ~ 24ms (2200 turns)
 - 10 Hz operation, alternating electron pulses
 - High energy to produce positrons/Low energy for collisions
 - Circulation time in DR 100ms (9.5k turns)
 - Damping time ~ 13ms (1200 turns) [Higher field damping wigglers]
 - For both 5 and 10 Hz modes, injection and extraction only during first and last 100 turns

Consider 10 Hz mode as that is the more challenging since the circulation time is shorter

- 1. Fill damping ring with hot bunches and extract cold beam (first 100 turns)
- 2. Circulate for ~1 damping time (1500 turns)
- 3. Unlock DR RF of one ring for ~ 5000 turns with $\Delta f_{RF} \sim \pm 20 Hz => \Delta C = \pm 0.1 mm, \quad (\Delta C = (-\Delta f/f)C)$
- 4. Relock RF ($\Delta f=0$)
- 5. Circulate for additional 2 ¹/₂ damping times (3000 turns)
- 6. Extract, having accumulated $\Delta P \approx \pm 0.5 m$

- Partition numbers
- Equilibrium emittance
- Dynamic aperture
- RF system

All subsequent calculations are for the 10 Hz mode

Evaluate dynamic aperture and partition functions for 5 distinct values of RF frequency offset

- 1. Δf_{RF} = 20Hz, $\Delta C = 0.1$ mm
- 2. $\Delta f_{RF} = 20Hz, \Delta C = -0.1mm$
- 3. Δf_{RF} = -1kHz, ΔC = 4.9mm
- 4. $\Delta f_{RF} = 1 \text{ kHz}, \Delta C = -4.9 \text{ mm}$
- 5. Δf_{RF} = -10kHz, ΔC = 49.2mm

Δf_{RF} = -20 Hz

Closed orbit

 $f_{RF} = 650 \text{ MHz}$ $\Delta f_{RF} = -20 \text{ Hz}$ $\Delta C = 0.1 \text{ mm}$ $\alpha_p = 3.335 \text{ X } 10^{-3}$ $\Delta E/E = 0.0009 \%$ $\varepsilon_x = (1.0003) \varepsilon_{x0}$ $\Delta P = 5000 \text{ X } 0.1 \text{ mm} = 0.5 \text{ m}$

We find Δf_{RF} = -20 Hz has negligible effect on dynamic aperture or beam quality

DA computed with no wiggler nonlinearities, misalignments or multipole errors

Δf_{RF} = 20 Hz

Closed orbit

 $f_{RF} = 650 \text{ MHz}$ $\Delta f_{RF} = 20 \text{ Hz}$ $\Delta C = -0.1 \text{ mm}$ $\alpha_p = 3.335 \text{ X } 10^{-3}$ $\Delta E/E = 0.0009 \%$ $\varepsilon_x = (1 - 0.0003)\varepsilon_{x0}$ $\Delta P = 5000 \text{ X } 0.1 \text{ mm} = -0.5 \text{ m}$

We find Δf_{RF} = +20 Hz, dynamic aperture is significantly smaller than both on energy and Δf_{RF} = -20 Hz configuration

$\Delta f_{RF} = -1000 \text{ Hz}$

Closed orbit

 $f_{RF} = 650 \text{ MHz}$ $\Delta f_{RF} = 1 \text{ kHz}$ $\Delta C = -4.9 \text{ mm}$ $\alpha_p = 3.335 \text{ X } 10^{-3}$ $\Delta E/E = 0.046 \%$ $\varepsilon_x = (1 + 0.0221)\varepsilon_{x0}$ $\Delta P = 5000 \text{ X } 4.9 \text{ mm} = -24.5 \text{ m}$

ECFA 2013

$\Delta f_{RF} = 1000 \text{ Hz}$

Closed orbit

 $f_{RF} = 650 \text{ MHz}$ $\Delta f_{RF} = 1 \text{ kHz}$ $\Delta C = -4.9 \text{ mm}$ $\alpha_p = 3.335 \text{ X } 10^{-3}$ $\Delta E/E = 0.046 \%$ $\varepsilon_x = (1 - 0.0106)\varepsilon_{x0}$ $\Delta P = 5000 \text{ X } 4.9 \text{ mm} = -24.5 \text{m}$

ECFA 2013

$\Delta f_{RF} = -10 \text{ kHz}$

Closed orbit

 $f_{RF} = 650 \text{ MHz}$ $\Delta f_{RF} = -10 \text{ kHz}$ $\Delta C = 49.2 \text{ mm}$ $\alpha_p = 3.335 \text{ X } 10^{-3}$ $\Delta E/E = 0.46 \%$ $\varepsilon_x = (15.5) \varepsilon_x$

> Evidently $\Delta f_{RF} \ll 10 \text{ kHz}$ To preserve beam quality

Effect of RF frequency shift on

path length, emittance, partition numbers, and bunch length

∆f _{RF} [Hz]	0	- 20	20	-1000	1000	-10,000
ΔC[mm]	0	0.1	-0.1	4.92	-4.92	49.2
ε [nm-rad]	0.6438	0.6440	0.6436	0.658	0.637	10.06
τ _x [msec]	12.9	12.9	12.9	13.5	12.3	21.9
т _у [msec]	12.9	12.9	12.9	13.0	12.7	14.0
τ _z [msec]	6.43	6.43	6.43	6.38	6.48	5.93
σ _I [mm]	5.76	5.76	5.75	5.71	5.81	5.26

- So as not to disturb circulating beam, RF frequency must change *adiabatically* (time scale of many revolutions or many synchrotron periods (Q_s=0.04)
- Rate of change of RF frequency limited by cavity Q (T > Q_L/ ω_{RF})
- If RF frequency is changed over time scale of 500 turns then
 - Adiabatic requirement is satisfied in so far as (20 synchrotron periods is *many*)
 - Q_L must be < 2.2 X 10⁶

- Looks feasible to introduce ~ 1-2 m path difference between electrons and positrons by varying damping ring RF frequency
- Negligible effect on emittance, partition numbers, bunch length
- Effect on dynamic aperture is asymmetric
 - DA relatively insensitive to increases in path length (reduced RF frequency)
 - DA shrinks rapidly with decreasing path length (increased RF frequency)

Should be checked with

- Misalignments
- Multipoles
- Full wiggler nonlinearities
- RF manipulation appears workable