Manipulating Damping Ring RF Frequency to Compensate Path Length Differences

ECFA Workshop May 2013
 David Rubin

- Anticipate $\pm 1 \mathrm{~m}$ path length errors over length of ILC

(see Ewan Paterson's talk)

- Damping rings
- Errors in circumference < 4mm are corrected with 100m long chicane

1. Circumference $=3238.68 \mathrm{~m}, 710.22 \mathrm{~m}$ straights
2. ~ 6 phase trombone cells
3. $54-2.1 \mathrm{~m}$ long wigglers wiggler period $=30 \mathrm{~cm}$
14-poles
$\mathrm{B}=1.51 \mathrm{~T}\left(\tau_{\mathrm{x}}=23.9 \mathrm{~ms}\right)$
$\mathrm{B}=1.81 \mathrm{~T}\left(\tau_{\mathrm{x}}=17.5 \mathrm{~ms}\right)$
$\mathrm{B}=2.16 \mathrm{~T}\left(\tau_{\mathrm{x}}=12.9 \mathrm{~ms}\right)$
4. Space for 16 RF cavities

Cryostats for upper and lower positron rings are interleaved

- Accumulated errors $\sim \pm 1 \mathrm{~m}$?
- Compensated by shifting frequency of damping ring RF for a fraction of the circulation time (E. PATERSON)
- Damping ring operation - background
-5 Hz and 10 Hz operating modes
$-5 \mathrm{~Hz}$
- Circulation time in DR - 200ms (19k Turns)
- Damping time $\sim 24 \mathrm{~ms}$ (2200 turns)
- 10 Hz operation, alternating electron pulses
- High energy to produce positrons/Low energy for collisions
- Circulation time in DR - 100ms (9.5k turns)
- Damping time $\sim 13 \mathrm{~ms}$ (1200 turns) [Higher field damping wigglers]
- For both 5 and 10 Hz modes, injection and extraction only during first and last 100 turns

Consider 10 Hz mode as that is the more challenging since the circulation time is shorter

1. Fill damping ring with hot bunches and extract cold beam (first 100 turns)
2. Circulate for ~ 1 damping time (1500 turns)
3. Unlock DR RF of one ring for ~ 5000 turns with $\Delta f_{R F} \sim \pm 20 \mathrm{~Hz}=>\Delta \mathrm{C}= \pm 0.1 \mathrm{~mm}, \quad(\Delta \mathrm{C}=(-\Delta \mathrm{f} / \mathrm{f}) \mathrm{C})$
4. Relock RF ($\Delta \mathrm{f}=0$)
5. Circulate for additional $21 / 2$ damping times (3000 turns)
6. Extract, having accumulated $\Delta \mathrm{P} \approx \pm 0.5 \mathrm{~m}$

- Partition numbers
- Equilibrium emittance
- Dynamic aperture
- RF system

All subsequent calculations are for the 10 Hz mode

Evaluate dynamic aperture and partition functions for 5 distinct values of RF frequency offset

1. $\Delta \mathrm{f}_{\mathrm{RF}}=-20 \mathrm{~Hz}, \Delta \mathrm{C}=0.1 \mathrm{~mm}$
2. $\Delta \mathrm{f}_{\mathrm{RF}}=20 \mathrm{~Hz}, \Delta \mathrm{C}=-0.1 \mathrm{~mm}$
3. $\Delta \mathrm{f}_{\mathrm{RF}}=-1 \mathrm{kHz}, \Delta \mathrm{C}=4.9 \mathrm{~mm}$
4. $\Delta \mathrm{f}_{\mathrm{RF}}=1 \mathrm{kHz}, \Delta \mathrm{C}=-4.9 \mathrm{~mm}$
5. $\Delta \mathrm{f}_{\mathrm{RF}}=-10 \mathrm{kHz}, \Delta \mathrm{C}=49.2 \mathrm{~mm}$

Closed orbit

Dynamic aperture

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{RF}}=650 \mathrm{MHz} \\
& \Delta \mathrm{f}_{\mathrm{RF}}=-20 \mathrm{~Hz} \\
& \Delta \mathrm{C}=0.1 \mathrm{~mm} \\
& \alpha_{\mathrm{p}}=3.335 \mathrm{X} 10^{-3} \\
& \Delta \mathrm{E} / \mathrm{E}=0.0009 \% \\
& \varepsilon_{\mathrm{x}}=(1.0003) \varepsilon_{\mathrm{x} 0} \\
& \Delta \mathrm{P}=5000 \times 0.1 \mathrm{~mm}=0.5 \mathrm{~m}
\end{aligned}
$$

We find $\Delta f_{R F}=-20 \mathrm{~Hz}$ has negligible effect on dynamic aperture or beam quality

DA computed with no wiggler nonlinearities, misalignments or multipole errors

Closed orbit

Dynamic aperture

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{RF}}=650 \mathrm{MHz} \\
& \Delta \mathrm{f}_{\mathrm{RF}}=20 \mathrm{~Hz} \\
& \Delta \mathrm{C}=-0.1 \mathrm{~mm} \\
& \alpha_{\mathrm{p}}=3.335 \mathrm{X} 10^{-3} \\
& \Delta \mathrm{E} / \mathrm{E}=0.0009 \% \\
& \varepsilon_{\mathrm{x}}=(1-0.0003) \varepsilon_{\mathrm{x} 0} \\
& \Delta \mathrm{P}=5000 \times 0.1 \mathrm{~mm}=-0.5 \mathrm{~m}
\end{aligned}
$$

We find $\Delta \mathrm{f}_{\mathrm{RF}}=+20 \mathrm{~Hz}$, dynamic aperture is significantly smaller than both on energy and $\Delta \mathrm{f}_{\mathrm{RF}}=$ -20 Hz configuration

$\Delta f_{R F}=-1000 \mathrm{~Hz}$

Closed orbit

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{RF}}=650 \mathrm{MHz} \\
& \Delta \mathrm{f}_{\mathrm{RF}}=1 \mathrm{kHz} \\
& \Delta \mathrm{C}=-4.9 \mathrm{~mm} \\
& \alpha_{\mathrm{p}}=3.335 \mathrm{X} \mathrm{10} \\
& \Delta \mathrm{E} / \mathrm{E}=0.046 \% \\
& \varepsilon_{\mathrm{x}}=(1+0.0221) \varepsilon_{\mathrm{x} 0} \\
& \Delta \mathrm{P}=5000 \times 4.9 \mathrm{~mm}=-24.5 \mathrm{~m}
\end{aligned}
$$

Dynamic aperture

Closed orbit

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{RF}}=650 \mathrm{MHz} \\
& \Delta \mathrm{f}_{\mathrm{RF}}=1 \mathrm{kHz} \\
& \Delta \mathrm{C}=-4.9 \mathrm{~mm} \\
& \alpha_{\mathrm{p}}=3.335 \mathrm{X} 10^{-3} \\
& \Delta \mathrm{E} / \mathrm{E}=0.046 \% \\
& \varepsilon_{\mathrm{x}}=(1-0.0106) \varepsilon_{\mathrm{x} 0} \\
& \Delta \mathrm{P}=5000 \times 4.9 \mathrm{~mm}=-24.5 \mathrm{~m}
\end{aligned}
$$

Dynamic aperture

Closed orbit

Dynamic aperture

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{RF}}=650 \mathrm{MHz} \\
& \Delta \mathrm{f}_{\mathrm{RF}}=-10 \mathrm{kHz} \\
& \Delta \mathrm{C}=49.2 \mathrm{~mm} \\
& \alpha_{\mathrm{p}}=3.335 \times 10^{-3} \\
& \Delta \mathrm{E} / \mathrm{E}=0.46 \% \\
& \varepsilon_{\mathrm{x}}=(15.5) \varepsilon_{\mathrm{x}}
\end{aligned}
$$

Effect of RF frequency shift on

path length, emittance, partition numbers, and bunch length

| $\Delta f_{R F}[\mathrm{~Hz}]$ | 0 | -20 | 20 | -1000 | 1000 | $-10,000$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\Delta C[\mathrm{~mm}]$ | 0 | 0.1 | -0.1 | 4.92 | -4.92 | 49.2 |
| $\varepsilon[\mathrm{~nm}-\mathrm{rad}]$ | 0.6438 | 0.6440 | 0.6436 | 0.658 | 0.637 | 10.06 |
| $T_{x}[\mathrm{msec}]$ | 12.9 | 12.9 | 12.9 | 13.5 | 12.3 | 21.9 |
| $T_{y}[\mathrm{msec}]$ | 12.9 | 12.9 | 12.9 | 13.0 | 12.7 | 14.0 |
| $T_{z}[\mathrm{msec}]$ | 6.43 | 6.43 | 6.43 | 6.38 | 6.48 | 5.93 |
| $\sigma_{1}[\mathrm{~mm}]$ | 5.76 | 5.76 | 5.75 | 5.71 | 5.81 | 5.26 |

- So as not to disturb circulating beam, RF frequency must change adiabatically (time scale of many revolutions or many synchrotron periods $\left(Q_{s}=0.04\right)$
- Rate of change of RF frequency limited by cavity Q ($\mathrm{T}>\mathrm{Q}_{\mathrm{L}} / \omega_{\mathrm{RF}}$)
- If RF frequency is changed over time scale of 500 turns then
- Adiabatic requirement is satisfied in so far as
(20 synchrotron periods is many)
- Q_{L} must be $<2.2 \times 10^{6}$
- Looks feasible to introduce ~1-2 m path difference between electrons and positrons by varying damping ring RF frequency
- Negligible effect on emittance, partition numbers, bunch length
- Effect on dynamic aperture is asymmetric
- DA relatively insensitive to increases in path length (reduced RF frequency)
- DA shrinks rapidly with decreasing path length (increased RF frequency)

Should be checked with

- Misalignments
- Multipoles
- Full wiggler nonlinearities

RF manipulation appears workable

