

SiD benchmarking status

Philipp Roloff (CERN)

ECFA LC2013, 30/05/2013, DESY Hamburg

- Reconstruction aspects
- DBD benchmark analyses
 - Top Yukawa coupling
 - Higgs branching fractions
 - Beam polarisation from WW pairs
 - Top cross section and FB-asymmetry
- Ongoing studies using CLIC_SiD

Reconstruction aspects

450000 particles per BX

4.1 interactions per BX

→ The particles from beam-induced backgrounds processes peak in the forward direction

- Based on the LCFIPlus package
- Cuts adjusted for the SiD detector geometry

Test of the flavour tagging performance in $Z \rightarrow b\overline{b}$, $c\overline{c}$, $q\overline{q}$ events

 Caused by misreconstruction of e⁺e⁻ pairs

 Low angle electrons are combined with these PFOs → forward electron tagging difficult

DBD benchmark analysis

- Top Yukawa coupling, 1 TeV (Ph. R., Jan Strube)
- Higgs branching fractions, 1 TeV (Tim Barklow, Homer Neal)
- Beam polarisation from WW pairs, 1 TeV (Tim Barklow)
- Top cross section and FB-asymmetry, 500 GeV (Malachi Schram)

ttH: introduction

• Final states: - "6 jets": $t(\rightarrow qqb)\bar{t}(\rightarrow lv\bar{b})H(\rightarrow b\bar{b})$, $m_{_{H}} = 125 \text{ GeV}$ - "8 jets": $t(\rightarrow qqb)\bar{t}(\rightarrow qq\bar{b})H(\rightarrow b\bar{b})$, $m_{_{H}} = 125 \text{ GeV}$

 Motivation: Cross section for ttH production is directly sensitive to the top Yukawa coupling, y,:

Event reconstruction I

1.) Remove all PFOs with: • p_T < 500 MeV • Θ < 20° • Θ > 160° 2.) Remove identified isolated leptons from PFO list 8jet signal event

3.) Perform jet clustering using the Durham algorithm in the exclusive mode with 6 or 8 jets

4.) Obtain b-tag value for each jet using LCFIPlus

5.) Group jets into W[±], H and top pairs by minimising:

6jets:
$$\frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_H)^2}{\sigma_H^2}$$

8jets:

$$\frac{(M_{12} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2} + \frac{(M_{45} - M_{W^{\pm}})^2}{\sigma_{W^{\pm}}^2} + \frac{(M_{456} - M_t)^2}{\sigma_t^2} + \frac{(M_{78} - M_H)^2}{\sigma_H^2}$$

- Final state with six jets
- tt background scaled by 0.01
- Signal has
 4 b-jets, part of
 the background
 samples contain
 only 2 b-jets

W⁺/top/Higgs masses

- Final state with eight jets
- tt background scaled by 0.01
- The background distributions are broader than the signal peaks

 $L_{int} = 1 ab^{-1}$

Top Yukawa coupling: results

Using cut on BDT output with best significance:

 $\Delta \sigma / \sigma = 13.2\% \rightarrow \Delta y_{\downarrow} / y \approx 6.9\%$

 $\Delta \sigma / \sigma = 11.5\% \rightarrow \Delta y_{+} / y \approx 6.0\%$

Combined: $\Delta y_{+} / y \approx 4.5\%$ (4.0% for only P(e⁻) = -0.8 and P(e⁺) = +0.2)

- The measurement uses semileptonic and fully hadronic events
- Using hadron-collider type k_t algorithm with R = 0.7 in the exclusive
- mode with 2 or 4 jets
- \rightarrow crucial for suppression of beam-induced backgrounds

$\cos \Theta$ range	$P_{\rm e^-}, P_{\rm e^+}$	$\Delta P_{\rm e^-}(L)_{\rm eff}$	$\Delta P_{\rm e^-}(R)_{\rm eff}$	$\Delta P_{\rm e}-$	$\Delta P_{\rm e^+}$
$0.8 < \cos\Theta < 1$	-0.8,+0.2	0.0011	0.022	0.13	0.087
$0.8 < \cos\Theta < 1$	+0.8,-0.2	0.00036	0.0096	0.0050	0.024
$-1<\cos\Theta<1$	-0.8,+0.2	0.0011	0.0104	0.062	0.041
$-1 < \cos \Theta < 1$	+0.8,-0.2	0.00036	0.0077	0.0045	0.020
$\cos \Theta$ range	$P_{\rm e^-}, P_{\rm e^+}$	$\Delta lpha$	Δeta	$\Delta P_{\rm e}- $	$\Delta P_{\rm e^+} $
$-1<\cos\Theta<1$	sum	0.0010	0.00032	0.0020	0.0029

Θ: W production angle
(polar angle of the
W⁻ in W⁺W⁻ rest
frame)

 ν_{o}

W*

 W^*

final state		h →bb (%)	$egin{array}{c} \mathrm{h} ightarrow \mathrm{c}\overline{\mathrm{c}} \ (\%) \end{array}$	$egin{array}{c} \mathrm{h} ightarrow \mathrm{gg} \ (\%) \end{array}$	$egin{array}{c} \mathrm{h} ightarrow \mathrm{W}^+\mathrm{W}^- \ (\%) \end{array}$
	$e^+e^- \rightarrow 2$ fermions	0.14	0.40	0.14	0.00
	$e^+e^- \rightarrow 4$ fermions	6.41	22.3	19.6	20.0
 Backgrounds 	$e^+e^- \rightarrow 6$ fermions	0.23	2.30	2.38	2.64
	$\gamma\gamma o X$	1.19	8.11	11.0	11.9
from electron-	$\gamma e^+ \to X$	3.03	15.3	18.1	19.3
nhatan	$e^-\gamma \to X$	3.80	23.5	28.5	28.3
photon	$h \rightarrow b\overline{b}$	83.7	7.00	0.36	0.96
intoractions	$\mathrm{h} \to \mathrm{c} \overline{\mathrm{c}}$	0.28	12.6	0.45	0.65
	$\mathrm{h} ightarrow \mathrm{gg}$	0.50	1.42	15.2	2.81
important	$\mathbf{h} \to \mathbf{W} \mathbf{W}^*$	0.17	6.03	3.8	12.3

SiD benchmarking

	$\mathcal{L}=50$	$\mathcal{L} = 1 \; \mathrm{ab}^{-1}$	
	${\sf P}({ m e}^-)=-80\% \ {\sf P}({ m e}^+)=+20\%$	${f P(e^-)=+80\%\ P(e^+)=-20\%}$	${\sf P}({ m e}^-)=-80\% \ {\sf P}({ m e}^+)=+20\%$
$\begin{array}{c} h \rightarrow b \overline{b} \\ h \rightarrow c \overline{c} \\ h \rightarrow g g \\ h \rightarrow W^+ W^- \end{array}$	0.0067 0.108 0.044 0.047	0.046 0.843 0.294 0.346	0.0047 0.076 0.031 0.033

Analysis is still ongoing, results will improve

Current Activities of the SiD ffH 1TeV BR Study

500/fb -80/+20	SiD DBD	SID now
H → cc	0.108	0.088 Preliminary

- BDTG (higher stats training eventually proved that this is better than Fisher, FisherG, and BDT)
- higher stats for decay mode selection training
- about 30% more ffh_nomu events
- addition of b & c likeness variables
- more 250GeV Z->bb,cc,qq used for flavor tagging training
- added event vertex category variables for incorporating different performance cuts depending on event category

Investigating using the template method for SiD

Investigating flavor tagging performance:

Investigated reaction: $e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}q\bar{q}$ $\sqrt{s} = 500 \text{ GeV}, 500 \text{ fb}^{-1}, P(e^-) = \pm 80\%, P(e^-) = \pm 30\%$

- Event selection follows closely the LOI study
- Flavour tagging based on LCFIPlus, kinematic fit

$$A_{FB} = \frac{\sigma(\theta < 90^{\circ}) - \sigma(\theta > 90^{\circ})}{\sigma(\theta < 90^{\circ}) + \sigma(\theta > 90^{\circ})}$$

 Θ : angle to the reconstructed top quark

Beauty and top quark charge obtained from combination of vertex and jet charges:

$$Q = \frac{\sum_{j} p_{j}^{k} Q_{j}}{\sum_{j} p_{j}^{k}} \qquad k = 0.3$$

30/05/2013

SiD benchmarking

- Beam-induced backgrounds not negligible:
 - Impact on flavour tagging performance visible
 - Need to use hadron-collider type jet finding algorithms if the forward direction is relevant
 - Forward electron tagging needs work
- Comparison to and common meetings with ILD were very useful
- As always, more documentation desirable (some software tools, details of LOI analyses)

Instead of a summary...

Process	\sqrt{s}	L	SiD	Meas. Quant. Result		Result	
$e^+e^- \rightarrow$	(GeV)	$({\rm fb}^{-1})$		Unit			
$e^+e^-h/\mu^+\mu^-h$	250	250	LOI	m_H	GeV	± 0.04	
				σ	%	\pm 2.7	
$hZ^0 ightarrow c\overline{c}q\overline{q}$	250	250	LOI	BR	%	\pm 6.0	
$hZ^0 ightarrow c\overline{c}\nu\overline{ u}$	250	250	LOI	BR	%	\pm 11.0	
$\mathrm{hZ^0} ightarrow \mu^+ \mu^- \mathrm{q} \overline{\mathrm{q}}$	250	250	LOI	σ	%	89.1	
$\tau^+ \tau^-$	500	500	LOI	$A^{ au}{}_{FB}$	$ \pm$ 0.0021/0.002		
_				$< P_{\tau} >$	$\% \pm 1.7/2.3$		
$\mathrm{tt} \rightarrow 6 \mathrm{ jets}$	500	500	LOI	m_{top}	GeV	173.92 ± 0.05	
				σ	%	0.49	
				$A^t{}_{FB}$	-	± 0.008	
$\tilde{\chi}_2^0 \tilde{\chi}_2^0 ightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 Z^0 Z^0$	500	500	LOI	$m_{ ilde{\chi}_1^0}$	GeV	\pm 0.16	
$\tilde{\chi}_2^0 \tilde{\chi}_2^0 ightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mathbf{Z}^0 \mathbf{Z}^0$	500	500	LOI	$m_{\tilde{\chi}_1^+}$	GeV	\pm 0.45	
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^-$	500	500	LOI	$m_{\widetilde{\chi}_1^0}$	GeV	\pm 0.28	
$\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 W^+ W^-$	500	500	LOI	$m_{ ilde{\chi}_2^0}$	GeV	\pm 0.49	
$t \overline{t} h$ (6 jets)	1000	1000	DBD	σ	%	\pm 13.2	
$t\bar{t}h$ (8 jets)	1000	1000	DBD	σ	%	\pm 11.5	
$t\overline{t}h$ (combined)	1000	1000	DBD	σ	%	\pm 8.7	
$v_e^{}\overline{v}_e^{}h^{;}h ightarrow WW^{*}$	1000	1000	DBD	$\sigma imes BR$	%	\pm 3.3	
$\nu_{\!\rm e} \overline{\nu}_{\!\rm e} {\rm h}; {\rm h} \to {\rm gg}$	1000	1000	DBD	$\sigma\times BR$	%	\pm 3.1	
$\nu_{\!\rm e}^{}\overline{\nu}_{\!\rm e}^{}\mathrm{h};\mathrm{h}\rightarrow\mathrm{c}\overline{\mathrm{c}}$	1000	1000	DBD	$\sigma\times BR$	%	\pm 7.6	
$\nu_{\!\rm e}^{} \overline{\!\nu}_{\!\rm e}^{} {\rm h}; {\rm h} \rightarrow {\rm b} \overline{\rm b}$	1000	1000	DBD	$\sigma\timesBR$	%	\pm 0.47	
$\nu_{\rm e}\overline{\nu}_{\rm e}{\rm h};{\rm h}\to\mu^+\mu^-$	1000	1000	DBD	$\sigma\times BR$	%	\pm 32	
W^+W^-	1000	1000	DBD	$P_{\rm e^-}(L)_{\rm eff}$	%	\pm 0.20/0.90	
W^+W^-	1000	1000	DBD	$ P_{e^{-}} $	%	\pm 0.25	
W^+W^-	1000	1000	DBD	$ P_{e^+} $	%	\pm 1.45	
$t\bar{t} \rightarrow 6 \text{ jets}$	500	500	DBD	σ	%	\pm 0.47/0.69	
-				$A^t{}_{FB}$	%	\pm 2.0/2.5	

The benchmark results illustrate the detector performance of the SiD detector for centre-of-mass energies of up to 1 TeV

30/05/2013

Ongoing studies using CLIC_SiD

Ongoing effort to investigate the full physics performance of CLIC for SM Higgs boson measurements at 350, 1400 and 3000 GeV:

350 GeV:

- Model-independent mass and cross section from recoil method
 - coil method

<u>CLIC_SiD</u>

• $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}, H \rightarrow gg, BR(H \rightarrow T^{+}T^{-}), H \rightarrow WW^{*}$

1.4 GeV:

- $\underline{H \rightarrow b\overline{b}}, \ \underline{H \rightarrow c\overline{c}}, \ \underline{H \rightarrow gg}, \ \underline{BR(H \rightarrow \tau^{+}\tau^{-})}, \ H \rightarrow WW^{*}, \ \underline{H \rightarrow Z\gamma}, \ \underline{H \rightarrow \gamma\gamma}, \ H \rightarrow \mu^{+}\mu^{-}$
- top Yukawa coupling from the ttH cross section
- <u>Higgs self-coupling</u> from HHvv cross section (improvements by refined analysis expected)
- Higgs production in ZZ-fusion

3 TeV:

- $\underline{H \rightarrow b\overline{b}}, \underline{H \rightarrow c\overline{c}}, \underline{H \rightarrow gg}, H \rightarrow WW^*, \underline{H \rightarrow \mu^{\pm}\mu^{-}}$
- <u>Higgs self-coupling</u> from HHvv cross section (improvements by refined analysis expected)

In addition:

- Extraction of the Higgs width at all energies
- Extraction of the Higgs couplings from combined fit to all measurements

Expect full set of results in the summer

Tomas Lastovicka: <u>Measurement of the Higgs couplings to b- and c-quarks and to</u> <u>gluons at 350 GeV, 1.4 TeV and 3 TeV CLIC</u>

Eva Sicking: Measurement of the Higgs couplings to gauge bosons at CLIC

Astrid Münnich: Measurement of the Higgs boson decay to tau leptons at a CLIC collider operating at 350 and 1400 GeV

Ivanka Bozovic-Jelisavcic: Measurement of the Higgs boson decay to muons at a CLIC collider operating at 1.4 and 3 TeV

Sophie Redford: Measurement of the top Yukawa coupling at a 1.4 TeV CLIC collider

Jan Strube: Measurement of the Higgs self-coupling at 1.4 and 3 TeV

<u>CLIC_SiD</u>

Thanks for your attention!