Measurement of $\sigma(e^+e^- \rightarrow H\tau\tau) \times BR(H \rightarrow \tau\tau)$ at CLIC @ 350 GeV and 1.4 TeV

A. Münnich

ECFA Meeting, 28.5.2013

DESY, Germany

Outline

Analysis at 350 GeV and 1.4 TeV

- Signature and channels
- Reconstruction
- Outs
- Event Selection
- Extracting statistical error on σ×BR

$\sqrt{s} = 1400 \text{ GeV}$

Process:	$e^+e^- \to H\nu\nu$
Particle mass:	$m_{ m H}=$ 120 GeV
inal state:	ττνν
Branching ratio:	$H \rightarrow \tau \tau = 7.04\%$
Cross section:	248 fb \times 0.07 = 17.5 fb

$\sqrt{s} = 350 \; \mathrm{GeV}$

Process:	$e^+e^- ightarrow HZ$
Particle mass:	$m_{ m H}=$ 126 GeV
Final state:	ττqq
Branching ratio:	$H \rightarrow \tau\tau = 6.15\%$
Cross section:	93.5 fb \times 0.06 = 5.75 fb

Branching ratios:

$\tau \to \text{hadrons}$	64.8%
$\tau \to e \nu \overline{\nu}$	17.8%
$\tau \to \mu \nu \overline{\nu}$	17.4%

- Many background channels in common with study of τ₁ pair production.
- Some with very high cross section!
- \rightarrow reuse already produced data sets (although $m_{
 m H} =$ 120 GeV)

Cuts on stdhep level (after generator, before simulation)

- $10 < \theta_{\tau} < 170$ deg, where θ_{τ} is the polar angle of the τ candidate
- *p*_T > 20 GeV
- $\Delta \phi < 178 \deg$
- angle of τ system > 0.4 rad (23 deg)
- $40 < invariant mass of \tau system < 650 GeV$

Channels @ 1.4 TeV

Process	Cross section [fb]	Luminosity [ab ⁻¹]
$ee \to H\nu\nu \to \tau\tau\nu\nu$	17.5	4.41
$ee \to \tau \tau^\star$	5.3	5.7
$ee \to \tau\tau\nu\nu^{\star}$	38.5	4.6
$ee \to ee\tau\tau^{\star}$	67.6	1.3
$ee \to \mu \mu \tau \tau^{\star}$	2.0	10.9
$ee \to qq\nu\nu^{\star}$	648.3	0.5
$ee \rightarrow qqee$	225.9	0.4
$\gamma\gamma \to \tau\tau^\star$	404.3	0.6
$\gamma\gamma ightarrow au au u u^{\star}$	84.3	2.4
$\gamma\gamma ightarrow ee au au^{*}$	2.6	5.9
$\gamma\gamma ightarrow \mu\mu au au^{\star}$	10.6	2.4
$\gamma\gamma ightarrow qq u u$	0.63	15.0
$\gamma\gamma \to qqee$	12.2	1.6
$\gamma e \to \tau \tau e$	1795	0.5
$\gamma e \to q q e$	3283	0.3
$\gamma e \to q q \nu \nu e$	21.0	1.7

*cross sections after stdhep cuts, in common with $\tilde{\tau}_1$ pair production

Cuts on analysis level have to be stronger than stdhep cuts:

- no leptons in τ
- $15 < \theta_{\tau} < 165 \text{ deg}$
- *p*_T of τ > 25 GeV
- $\Delta \phi < 177 \deg$
- angle between the two $\tau s > 0.5$
- $45 < invariant mass of \tau system < 130 GeV$
- Thrust < 0.99</p>
- 20 < transverse mass of τ system < 400 GeV
- Number of tracks in τ candidate either 1 or 3

Forces a bit higher cuts on p_T than would be optimal for this analysis.

Jet like cone algorithm with some specific requirements according to τ properties:

- Take charged particle with highest energy and test for seed
- Loop charged particles and add the ones inside search cone to seed adjusting cone to new combined momentum
- Associate neutral particles in same manner
- Start from top to find next τ candidate
- Ombine all particles inside τ candidate to τ
- Oheck for split τ candidates
- Reject τ based on invariant mass, number of charged tracks and isolation criteria

τ reconstruction:

- The following parameter set was chosen for the reconstruction of τ leptons:
 - Minimum p_T to enter reconstruction: 1 GeV
 - Minimum p_T for τ seed: 5 GeV
 - Maximum for invariant mass of τ candidate: 2.5 GeV
 - Opening angle of search cone: 0.07 rad
 - Opening angle of isolation cone (relative to search cone): 0.3 rad
 - Maximum energy allowed in isolation cone: 5.0 GeV

Results in

- single τ efficiency: 70%,
- fake rate for a quark: 7%

2 Analysis cuts:

- 2 τs
- hadronic decays only
- 1 and 3 prong τs

Process	Cross section [fb]	avail. Lumi [ab ⁻¹]
$ee \rightarrow HZ (H \rightarrow \tau\tau, Z \rightarrow qq)$	5.7	6.6
$ee \rightarrow HZ$ (H $\rightarrow X$, Z $\rightarrow \tau\tau$)	4.6	2.4
$ee \rightarrow qq \tau \tau \text{ (m}_{H} = 12 \text{TeV)}$	70.0	1.2
ee ightarrow qq au au u u	1.6	5.0
$ee \rightarrow qqqq$	5900	0.1
$\gamma\gamma ightarrow qq au$	4.5	0.55
$\gamma\gamma ightarrow qq q q$	84.0	0.64
$\gamma e \rightarrow qq\tau \tau e$	1.1	2.7
$\gamma e ightarrow qqqqe$	52.6	0.46

τ reconstruction:

- The following parameter set was chosen for the reconstruction of τ leptons:
 - Minimum p_T to enter reconstruction: 0 GeV
 - Minimum p_T for τ seed: 5 GeV
 - Maximum for invariant mass of τ candidate: 2.5 GeV
 - Opening angle of search cone: 0.1 rad
 - Opening angle of isolation cone (rel. to search cone): 0.3 rad
 - Maximum energy allowed in isolation cone: 2.0 GeV different than 1.4 TeV reco

Results in

- efficiency single τ : 73%,
- fake rate for a quark: 4.7%
- 2 Jet reco on rest group, forced into 2 jets
- Analysis cuts:
 - 2 τs
 - hadronic decays only
 - 1 and 3 prong τs

Event selection with Boosted Decision Tree (BDT) based on kinematic variables of τ -system and the full event.

Example variables at 350 GeV:

Signal Selection with BDT @ 350 GeV

Signal Selection with BDT @ 1.4 TeV

Method 1:

$$\frac{\Delta\sigma}{\sigma} = \frac{\sqrt{S+B}}{S}$$

where S and B are summed over all bins above BDT cut. (This what one would do for an event selection in an analysis to obtain a distribution of some variable to fit.)

Method 2:

Make use of the full signal range! Calculate $\frac{\Delta\sigma}{\sigma}$ for each BDT bin with signal. Then sum up the errors:

$$x_i = \frac{\sqrt{S_i + B_i}}{S_i}$$
$$\frac{\Delta \sigma}{\sigma} = \sqrt{\frac{1}{\sum_i \frac{1}{x_i^2}}}$$

1.4 TeV

312	Signal events (BDT>0.05)	1227
529	Total signal events	2238
150	Background events (BDT>0.05)	1620
60%	Signal efficiency	55%
67%	Signal purity	43%
6.9%	$\sqrt{S+B}/S$ (Method 1)	4.3%
6.2%	$\sqrt{S+B}/S$ (Method 2)	3.7%
	312 529 150 60% 67% 6.9% 6.2%	312Signal events (BDT>0.05)529Total signal events150Background events (BDT>0.05)60%Signal efficiency67%Signal purity6.9% $\sqrt{S+B}/S$ (Method 1)6.2% $\sqrt{S+B}/S$ (Method 2)

Method 2 has a slight advantage over method 1 as this is a statical error and method 2 can use the full information contained in every bin.

Summary

The statistical accuracy of $\sigma(e^+e^- \rightarrow H\tau\tau) \times BR(H \rightarrow \tau\tau)$ has been determined to 3.7% at 1.4 TeV and to 6.2% at 350 GeV.

Possible improvements:

- Better invariant mass reconstruction of *τ*-pair could improve efficiency on event selection.
- At 1.4 TeV a new production with lower stdhep cuts on transverse momentum could help.

Notes:

- 350 GeV: https://edms.cern.ch/document/1256758
- 1.4 TeV: https://edms.cern.ch/document/1231676

BACKUP

TMVA training variables at 1.4 TeV

- Missing transverse momentum p_{T,miss}
- Thrust and oblateness of the τ system
- Sum of τ energies
- Sum of the transverse momenta of both τ candidates
- $\cos \theta_{\tau,1}$ and $\cos \theta_{\tau,2}$
- Invariant mass of the τ system
- Transverse mass of the τ system
- Angle between the two τ candidates
- θ^{miss} , where θ^{miss} is the polar angle of the missing momentum
- Accoplanarity $(\Delta \phi)$ between the two τs
- Visible energy in the event
- Energy of the rest group (particles not belonging to a τ candidate)

TMVA training variables at 350 GeV

- Missing transverse momentum p_{T,miss}
- Thrust of the full event
- Thrust and oblateness of the τ system and the quark system
- Sum of the transverse momenta of both τ candidates and quark jets
- $\cos \theta_{\tau,1}$ and $\cos \theta_{\tau,2}$
- Invariant mass of the τ system and the quark system
- Angle between the two τ candidates
- Angle between the two quark jets
- θ^{miss} , where θ^{miss} is the polar angle of the missing momentum
- $\Delta \phi$ between the two τs
- $\Delta \phi$ between the two quarks
- Visible energy in the event