Measurement of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H} \tau \tau\right) \times \mathbf{B R}(\mathrm{H} \rightarrow \tau \tau)$ at CLIC @ 350 GeV and 1.4 TeV

A. Münnich

ECFA Meeting, 28.5.2013

DESY, Germany

Analysis at 350 GeV and 1.4 TeV

- Signature and channels
- Reconstruction
- Cuts
- Event Selection
- Extracting statistical error on $\sigma \times \mathrm{BR}$

Properties for both Analyses

$\sqrt{s}=1400 \mathrm{GeV}$

$\begin{array}{ll}\text { Process: } & \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{Hvv} \\ \text { Particle mass: } & m_{\mathrm{H}}=120 \mathrm{GeV}\end{array}$
Final state:
Branching ratio:
Cross section:
$\tau \tau \nu v$
$H \rightarrow \tau \tau=7.04 \%$
$248 \mathrm{fb} \times 0.07=17.5 \mathrm{fb}$

$\sqrt{s}=350 \mathrm{GeV}$

Process:
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{HZ}$
Particle mass:
$m_{\mathrm{H}}=126 \mathrm{GeV}$
Final state:
$\tau \tau q q$
Branching ratio:
Cross section:
$H \rightarrow \tau \tau=6.15 \%$
$93.5 \mathrm{fb} \times 0.06=5.75 \mathrm{fb}$

Branching ratios:

$\tau \rightarrow$ hadrons	64.8%
$\tau \rightarrow \mathrm{e} v \bar{v}$	17.8%
$\tau \rightarrow \mu \nu \bar{v}$	17.4%

$\tau \rightarrow$ hadrons 64.8%
$\tau \rightarrow e v \bar{v} \quad 17.8 \%$
$\tau \rightarrow \mu \nu \bar{v} \quad 17.4 \%$
-

- Many background channels in common with study of $\tilde{\tau}_{1}$ pair production.
- Some with very high cross section!
- \rightarrow reuse already produced data sets (although $m_{\mathrm{H}}=120 \mathrm{GeV}$)

Cuts on stdhep level (after generator, before simulation)

- $10<\theta_{\tau}<170$ deg, where θ_{τ} is the polar angle of the τ candidate
- $p_{\mathrm{T}}>20 \mathrm{GeV}$
- $\Delta \phi<178 \mathrm{deg}$
- angle of τ system >0.4 rad (23 deg)
- $40<$ invariant mass of τ system $<650 \mathrm{GeV}$

Channels @ 1.4 TeV

Process	Cross section [fb]	Luminosity $\left[\mathrm{ab}^{-1}\right]$
ee $\rightarrow \mathrm{Hvv} \rightarrow \tau \tau v \nu$	17.5	4.41
ee $\rightarrow \tau \tau^{*}$	5.3	5.7
ee $\rightarrow \tau \tau \nu v^{*}$	38.5	4.6
ee \rightarrow ee $\tau \tau^{*}$	67.6	1.3
ee $\rightarrow \mu \mu \tau^{*}$	2.0	10.9
ee \rightarrow qqvv*	648.3	0.5
ee \rightarrow qqee	225.9	0.4
$\gamma \rightarrow \tau \tau^{*}$	404.3	0.6
$\gamma \gamma \rightarrow \tau \tau \nu v^{*}$	84.3	2.4
$\gamma \rightarrow$ ee $\tau \tau^{*}$	2.6	5.9
$\gamma \gamma \rightarrow \mu \tau \tau^{*}$	10.6	2.4
$\gamma \gamma \rightarrow$ qqvv	0.63	15.0
$\gamma \rightarrow$ qqee	12.2	1.6
$\gamma \mathrm{e} \rightarrow \tau \tau \mathrm{e}$	1795	0.5
$\gamma \mathrm{e} \rightarrow$ qqe	3283	0.3
$\gamma \mathrm{e} \rightarrow$ qqvve	21.0	1.7

*cross sections after stdhep cuts, in common with $\tilde{\tau}_{1}$ pair production

Cuts on analysis level have to be stronger than stdhep cuts:

- no leptons in τ
- $15<\theta_{\tau}<165 \mathrm{deg}$
- pT of $\tau>25 \mathrm{GeV}$
- $\Delta \phi<177 \mathrm{deg}$
- angle between the two $\tau s>0.5$
- $45<$ invariant mass of τ system $<130 \mathrm{GeV}$
- Thrust <0.99
- $20<$ transverse mass of τ system $<400 \mathrm{GeV}$
- Number of tracks in τ candidate either 1 or 3

Forces a bit higher cuts on p_{T} than would be optimal for this analysis.

Jet like cone algorithm with some specific requirements according to τ properties:
(1) Take charged particle with highest energy and test for seed
(2) Loop charged particles and add the ones inside search cone to seed adjusting cone to new combined momentum
(3) Associate neutral particles in same manner
(4) Start from top to find next τ candidate
(5) Combine all particles inside τ candidate to τ
(6) Check for split τ candidates
(7) Reject τ based on invariant mass, number of charged tracks and isolation criteria
(1) τ reconstruction:

- The following parameter set was chosen for the reconstruction of τ leptons:
- Minimum p_{T} to enter reconstruction: 1 GeV
- Minimum p_{T} for τ seed: 5 GeV
- Maximum for invariant mass of τ candidate: 2.5 GeV
- Opening angle of search cone: 0.07 rad
- Opening angle of isolation cone (relative to search cone): 0.3 rad
- Maximum energy allowed in isolation cone: 5.0 GeV

Results in

- single τ efficiency: 70\%,
- fake rate for a quark: 7\%
(2) Analysis cuts:
- $2 \tau \mathrm{~s}$
- hadronic decays only
- 1 and 3 prong $\tau \mathrm{s}$

Process	Cross section [fb]	avail. Lumi [ab ${ }^{-1}$]
ee $\rightarrow \mathrm{HZ} \quad(\mathrm{H} \rightarrow \tau \tau, \mathrm{Z} \rightarrow \mathrm{qq})$	5.7	6.6
ee $\rightarrow \mathrm{HZ} \quad(\mathrm{H} \rightarrow \mathrm{X}, \mathrm{Z} \rightarrow \tau \tau)$	4.6	2.4
ee $\rightarrow \mathrm{qq} \tau \tau\left(\mathrm{m}_{\mathrm{H}}=12 \mathrm{TeV}\right)$	70.0	1.2
ee \rightarrow qq $\tau \tau \nu \vee$	1.6	5.0
ee \rightarrow qqqq	5900	0.1
$\gamma \rightarrow \mathrm{qq} \tau \tau$	4.5	0.55
$\gamma \gamma \rightarrow \mathrm{qqqq}$	84.0	0.64
$\gamma \mathrm{e} \rightarrow \mathrm{qq} \mathrm{\tau} \mathrm{\tau е}$	1.1	2.7
$\gamma \mathrm{e} \rightarrow$ qqqqe	52.6	0.46

(1) τ reconstruction:

- The following parameter set was chosen for the reconstruction of τ leptons:
- Minimum p_{T} to enter reconstruction: 0 GeV
- Minimum p_{T} for τ seed: 5 GeV
- Maximum for invariant mass of τ candidate: 2.5 GeV
- Opening angle of search cone: 0.1 rad
- Opening angle of isolation cone (rel. to search cone): 0.3 rad
- Maximum energy allowed in isolation cone: 2.0 GeV
different than 1.4 TeV reco
Results in
- efficiency single τ : 73%,
- fake rate for a quark: 4.7%
(2) Jet reco on rest group, forced into 2 jets
(3) Analysis cuts:
- $2 \tau \mathrm{~s}$
- hadronic decays only
- 1 and 3 prong τ s

Event selection with Boosted Decision Tree (BDT) based on kinematic variables of τ-system and the full event.

Example variables at 350 GeV :

- Method 1:

$$
\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{S+B}}{S}
$$

where S and B are summed over all bins above BDT cut.
(This what one would do for an event selection in an analysis to obtain a distribution of some variable to fit.)

- Method 2:

Make use of the full signal range!
Calculate $\frac{\Delta \sigma}{\sigma}$ for each BDT bin with signal. Then sum up the errors:

$$
\begin{aligned}
& x_{i}=\frac{\sqrt{S_{i}+B_{i}}}{S_{i}} \\
& \frac{\Delta \sigma}{\sigma}=\sqrt{\frac{1}{\sum_{i} \frac{1}{x_{i}^{2}}}}
\end{aligned}
$$

350 GeV
1.4 TeV

Signal events (BDT>0.08)	312			Signal events (BDT>0.05)	1227
Total signal events	529		Total signal events	2238	
Background events (BDT>0.08)	150		Background events (BDT>0.05)	1620	
Signal efficiency	60%		Signal efficiency	55%	
Signal purity	67%		Signal purity	43%	
$\sqrt{S+B} / S$ (Method 1)	6.9%		$\sqrt{S+B} / S$ (Method 1)	4.3%	
$\sqrt{S+B} / S$ (Method 2)	6.2%		$\sqrt{S+B} / S$ (Method 2)	3.7%	

Method 2 has a slight advantage over method 1 as this is a statical error and method 2 can use the full information contained in every bin.

Summary

The statistical accuracy of $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{H} \tau \tau\right) \times \mathrm{BR}(\mathrm{H} \rightarrow \tau \tau)$ has been determined to 3.7% at 1.4 TeV and to 6.2% at 350 GeV .

Possible improvements:

- Better invariant mass reconstruction of τ-pair could improve efficiency on event selection.
- At 1.4 TeV a new production with lower stdhep cuts on transverse momentum could help.

Notes:

- 350 GeV: https://edms.cern.ch/document/1256758
- 1.4 TeV: https://edms.cern.ch/document/1231676

BACKUP

- Missing transverse momentum $p_{T, \text { miss }}$
- Thrust and oblateness of the τ system
- Sum of τ energies
- Sum of the transverse momenta of both τ candidates
- $\cos \theta_{\tau, 1}$ and $\cos \theta_{\tau, 2}$
- Invariant mass of the τ system
- Transverse mass of the τ system
- Angle between the two τ candidates
- $\theta^{\text {miss }}$, where $\theta^{\text {miss }}$ is the polar angle of the missing momentum
- Accoplanarity $(\Delta \phi)$ between the two τs
- Visible energy in the event
- Energy of the rest group (particles not belonging to a τ candidate)
- Missing transverse momentum $p_{\mathrm{T}, \text { miss }}$
- Thrust of the full event
- Thrust and oblateness of the τ system and the quark system
- Sum of the transverse momenta of both τ candidates and quark jets
- $\cos \theta_{\tau, 1}$ and $\cos \theta_{\tau, 2}$
- Invariant mass of the τ system and the quark system
- Angle between the two τ candidates
- Angle between the two quark jets
- $\theta^{\text {miss }}$, where $\theta^{\text {miss }}$ is the polar angle of the missing momentum
- $\Delta \phi$ between the two $\tau \mathrm{s}$
- $\Delta \phi$ between the two quarks
- Visible energy in the event

