

Search for Invisible Higgs Decays at the ILC

Ayumi Yamamoto, <u>Akimasa Ishikawa</u>, Hitoshi Yamamoto

(Tohoku University)

Keisuke Fujii

(KEK)

Invisible Higgs Decay

- In the SM, an invisible Higgs decay is
 H → ZZ* → 4v process and its BF is small ~0.1%
- If we found sizable invisible Higgs decays, it is clear new physics signal.
 - The decay products are dark matter candidates.
- At the LHC, one can search for invisible Higgs decays by using recoil mass from Z or summing up BFs of observed decay modes with some assumptions.
 - The upper limit is O(10%).
- At the ILC, we can search for invisible Higgs decays using a recoil mass technique with model independent way!
 - e+e- → ZH

Signal and Backgrounds

• Signal

è

- − e+e- \rightarrow ZH \rightarrow (qq)(DM DM)
- Backgrounds
 - − e+e- \rightarrow ZZ, vvZ, WW, evW, eeZ
 - − ZH → (qq)(ZZ*) → (qq)(4 ν) : irreducible
 - − $ZH \rightarrow (\nu\nu)(ZZ^*) \rightarrow (\nu\nu)(qq)(\nu\nu)$

3

MC setup and Samples

- Generator : physsim
 - for both signal and backgrounds
 - $E_{CM} = 250 GeV$
 - Higgs mass 125GeV
 - H→DM DM
 - Fermion dark matter
 - Dark matter mass 50GeV, well below the pair production threshold
 - Polarization of P(e+,e-)=(-30%,+80%) to suppress W involving background
- Fast simulator : JSFQuickSim
- Samples
 - Two sets of signal and backgrounds
 - One used to determine selections, the other for efficiency and PDF for toy MC
 - 100000 events for each signal sample
 - 1ab⁻¹ data for each backgrounds samples.

mode	ZZ	ννΖ	WW	evW	eeZ
Cross-Section [fb]	982	ECDA@DESY	2783	684	3992 4

Overview of the Selections

- Durham jet algorithm
 - Two-jet reconstruction
- No isolated leptons
- No forward going electrons
- Z mass reconstructed from di-jet
 - Also used for Likelihood ratio cut
- cos(θ_z)
 - Production angle of Z
 - Just apply < 0.99 cut to eliminate peaky eeZ background before making likelihood ratio
- Likelihood ratio of Z mass, $cos(\theta_z)$, $cos(\theta_{hel})$
 - $cos(\theta_{hel})$: Helicity angle of Z
- Recoil mass
 - The final plot

20130528 Fitted to set upper limit. ECFA@DESY

No Isolated Leptons

- Isolated lepton selections
 - Lepton candidate energy > 10 GeV
 - Measured energy within a cone of $\cos\theta = 0.94 < 10$ GeV

No Forward Going Electrons

- Since no forward detectors in the QuickSim, we look at generator information.
 - Electron with energy > 5GeV
 - Electron within FCal acceptance, 0.98 < |cosq| < 0.9999875

Z mass

- To suppress backgrounds having W in final states
 - 83 GeV < mZ < 100GeV</p>

Variables for Likelihood Ratio

0.4 0.5

0.6 0.7 0.8 0.9

CosThet

0.1 0.2 0.3

0.01 0.008

0.006

0.002

Likelihood Ratio

$$LikelihoodRatio = \frac{L_{sig}}{L_{sig} + L_{bg}} > 0.2$$

Recoil Mass

• 120 GeV < M_{recoil} < 140 GeV

signal

Recoil Mass

300 F

Sig

48044

132.2

Entries

Mean

Signal eff and BG Cross Section

Signal Efficiency is 42% and background cross section is 22fb after all selections.

Cut / σ[ab]	Signal [%]	ZZ	ννΖ	ww	ev₩	eeZ
No cut	100.00	982000	5000	2783000	684000	3992000
Isolated lepton	95.55	835853	4767	1745868	545711	2878061
Forward electron veto	95.55	586409	3971	1269207	455945	1709386
Z mass	48.92	156627	1966	34445	26718	752847
$\cos(\theta_z)$	48.54	153362	1920	33041	25806	8651
LR	48.04	150800	1893	30629	24231	6542
Recoil mass	42.10	20073	705	3695	7733	430

Set the upper limits on σ and BF

Toy MC

- Recoil mass distributions before cut is used for ToyMC.
- Recoil mass distributions with no signal are generated for each Likelihood ratio cut to minimize the upper limits.
 - Two backgrounds from ZH process are added to toy MC
 - $ZH \rightarrow (qq)(ZZ^*) \rightarrow (qq)(4\nu)$: irreducible, the BF~0.1%
 - $ZH \rightarrow (\nu\nu)(ZZ^*) \rightarrow (\nu\nu)(qq)(\nu\nu)$: can be suppressed by recoil mass
- Fit to Recoil mass distributions and extract Number of signals
- Repeat 1000 times and make Number of signals distribution.
- Set the 95% CL Limits on signal yield and cross section.

20130528

PDF for Toy MC Generation

signal

 $e^+e^- \rightarrow ZH \rightarrow q\overline{q}ZZ^* \rightarrow q\overline{q}\nu\nu\nu\nu$ $^{201}B.e^+e^- \rightarrow ZH \rightarrow \nu\nu ZZ^* \rightarrow \nu\nu q\overline{q}\nu\nu$

BG:ZZ+vvZ+WW+evW+eeZ

Results

• Set the upper limit with 250fb⁻¹,

 $-\sigma$ (e+e- → ZH, H → invisible) < 1.7 fb at 95% CL

Note. This "invisible" does not include 4 neutrinos final state

• From the $\sigma(e+e- \rightarrow ZH) = 240 \text{fb}$, upper limit on BF is obtained.

− BF (H \rightarrow invisible) < 0.70% at 95% CL with 250 fb⁻¹

	likelihood ratio	N _{sig} (C.L 95%)	efficiency	upper limit [fb]
	0	218	0.483	1.804
	0.1	213	0.483	1.762
	0.2	202	0.480	1.682
	0.3	198	0.463	1.711
	0.4	182	0.415	1.753
2013052	. ₈ 0.5	148 ECF	A@DESY 0.328	1.806
	0.6	88	0.162	2.174

Summary and Plan

- We have estimated the upper limits on the cross section and BF of invisible Higgs decays at the ILC at the E_{CM} of 250 GeV, with an integrated luminosity of 250 fb⁻¹ and polarization of P(e+,e-)=(-30%,+80%).
 - σ (e+e- → ZH, H→ invisible) < 1.7 fb at 95% CL
 - − BF (H \rightarrow invisible) < 0.70% at 95% CL with 250 fb⁻¹

- Study with a full simulator.
- Add leptonic Z decays.
- Combine studies at E_{CM} = 350GeV and 500GeV.