Ultra Low Mass Cooling for Fine Pixel Detectors

C. Lacasta, J. Mazorra de Cos, A. Oyanguren, P. Ruiz-Valls* IFIC (CSIC-UV) E. Currás, D. Moya, I. Vila, A. L. Virto IFCA (CSIC-UNICAN) May 28th 2013

Outline

- Motivation
- Thermal Dissipation studies:
 - Setup
 - Results
- Vibration and deformation studies
- Conclusions

Motivation

• New tracker detectors require ultra-thin sensors to reduce multiple scattering:

- e.g. <u>DEpleted P-channel Field Effect Transistor</u> (DEPFET)
- Chosen technology for Belle II PXD
- Candidate for ILD (among FPCCD, CMOS)

Traditional conductive cooling defeats the whole purpose (high material budget)

→ The solution lies in low mass systems such as injection of gaseous coolants (convective cooling)

Layout designed with the highest power dissipating elements in the end flanges
 May 28th ECFA Linear Collider Workshop 2013

Motivation

<u>Belle II Pixel detector (2 Layers)</u>

- 75 µm thin sensors in a 450 µm support frame
- 12 Ladders in the outer layer and 8 Ladders in the inner layer
- Power dissipated
 - 1 Watt in the sensor region
 - 1 W in the switchers
 - 8 W in each FEE end
- Angular acceptance ranges from 17° to 150°
- The support structure is designed allowing convective cooling in the sensor area and CO₂ active cooling out of the acceptance region

Support/Cooling Hybrid Structure

- Valencia PXD Mockup
 - Stainless Steel Cooling Blocks
 - Enclosed with copper foil ladders equipped with resistive heaters in the end flanges for both layers
 - A single Si thinned detector with printed Al resistors

- Cooling:
 - Liquid CO₂ circulated in the Cooling Blocks at -35°C
 - Injection of cooled (~0°C) N₂ Gas towards the sensor region at 3 bar and 15 L/min flow rate
 - Beam Pipe kept at 15°C with a composite liquid coolant.

- Measurement equipment:
 - Infrared Thermal Imaging Camera
 - Fiber Bragg Grating (FBG) temperature and humidity sensors
 - Pt100 probes

- The whole mockup is enclosed in a sealed methacrylate box, which allows control of the atmosphere
 - Humidity must kept very low to avoid frosting, which affects the emissivity and complicates infrared measurements.
 - Environment temperature is stable inside the box

Malfunction of the right DCD-DHP resistor

Ambient T = 25°C	Sensor T
T _{MAX} =~40°C ΔT=~15°C	Without convective cooling
T _{MAX} =~25°C ΔT=~5°C	With convective cooling

ECFA Linear Collider Workshop 2013

Sensor surface

Switcher surface

May 28th 2013 ECFA Linear Collider Workshop 2013

11/22

Different Environment Temperatures

- The whole mockup was moved to a smaller box, thermally isolated
- Cooling of the environment temperature
 - Pure N₂ gas atmosphere
- No thermal imaging due to space constraints
 - FBG cross referenced with Pt100s

May 28th 2013

 Sensor temperature with convective cooling depends on the ambient temperature

Ambient T (±2 °C)	No air cooli	ng T(±2°C)	Air cooling T(±2°C)		T _{hot} -T _{cool} (±3°C)	
	Sensor	Switcher	Sensor	Switcher	Sensor	Switcher
25	35	37	20	25	15	12
18	28	39	10	21	18	18
13	24	36	7	18	17	18

- Cooled N₂ gas at 3 bar and 15 L/min flow rate
- T gradient along the ladder ~5°C

Vibration Studies

- Air injection could cause vibrations in the ladder which may compromise the physical integrity of the thin sensors.
- We measured the displacement and vibrations using capacitive distance sensors and accelerometers.
 - Cu Dummy ladder Mockup -0.20--0.25 ເງົິ່-0.1 ຍີ_-0.2 s_-0.30 -0.3 -0.3 -0.4070 72 76 78 68 74 72 76 78 70 74 68 Time [s] Time [s] 0.05 0.05 0.04 0.04 ເລັດ.03 ເຊິ່ງ ພິງ.02 0.03 0.01 0.01 montenter 0.00 0.00 200 400 600 800 1000 200400 600 800 1000 Frequency [Hz] Frequency [Hz]
 - The whole mockup was studied to isolate the effect of the gas injection

Vibration Studies

- No vibrations were observed below 2kHz (sensor cutoff) with the cooling requirements (3 bar in the entrance pipes).
 - A ~400Hz peak appears at p=4 bar and above, amplitude 0.7 μ m rms

Conclusions

- Cooling of a working fine pixel sensor works properly
 - Combining contact and convective cooling
- No vibrations observed at the pressures studied for cooling

Relevance for ILD

Belle II

- 360 W entire pixel detector
- Convective cooling in the thin sensor area
- CO₂ active cooling out of the acceptance

ILD

- Naively ~900 to ~1080 W total
- ~4 to 5 W with power pulsing (ideal 1:200 duty cycle)
- No active cooling due to angular acceptance requirements
 - Convective cooling (performance demonstrated in Belle II)

Thank you very much

Backup

Emissivity calibration

Variable temperature box with different surface samples, measured normal incidence emissivities at different temperatures and found no significant behavior with temperature. Emissivity corrections are done by adjusting ϵ until temperature is consistent with Pt100/thermocouple measurements

	-20°C	95°C
1.0 + 10 degrees $1.0 + 20 degrees$ $1.0 + 30 degrees$ $0.75 + 0$	Material	Normal Emissivity
	Sensor surface	0,67±0,03
	DCD-DHP	0,34±0,04
ω 60 degrees	Tipp-ex	0,97±0,09
0.25- a d	AI	0,26±0,12
	Cu	0,22±0,12
	Thermal paste	0,88±0,09
0.25 0.5 0.75 1.0	Kapton Tape	0,99±0,10
cλ		24/22

Transparency of the Si sensor

- Peculiar shape of the T profile revealed infrared transparency of the ultrathin sensor layer.
- Measurements at the switchers (thicker) avoid this effect, we can still trust sensor surface values away from the CB regions.
- Fig. a shows opaque slide behind sensor, while b shows reflective slide, observe the pattern along the sensor surface change accordingly in each case.

Α

CO_2 system failure (as seen by the beam pipe sensors)

Vibrations & Deformation Experimental setup

- Fully enclosed volume with Cu dummies and Si resistive sample in outer layer.
- Probes

Contact accelerometers (Piezotronics PCB 352A24)

-Capacitive sensor (Micro-Epsilon Capa NCDT 6100)

Sensitivities:

Capacitive sensor: 0.15µm

Accelerometers: 0.002 m/s²

Vibrational modes

Fundamental mode: ω_{10} First few modes:

$$\omega_{20}/\omega_{10}=2, \ \omega_{30}/\omega_{10}=3... \ \omega_{n0}/\omega_{10}=n$$

 $\omega_{11}/\omega_{10}\sim9,1$

Vibration studies

29/<mark>22</mark>

More info

- Thermomechanical characterization of the Belle II Pixel detector (PXD)
 - http://digital.csic.es/handle/10261/64311