

Tracking and vertexing in the linear e⁺e⁻ collider

Carlos Marinas University of Bonn

LINEAR COLLIDER COLLABORATION

cmarinas@uni-bonn.de

Agenda

Charged particle detection performances of CMOS Pixel Sensors designed in a 0.18 um process based on a high resistivity epitaxial layer	CMOS WINTER, Marc
DEPFET detectors for future electron-positron colliders	MARINAS PARDO, Carlos 🗎
SemRm 4, DESY Hamburg	09:20 - 09:40
R&D status of FPCCD VTX and its cooling system	SUGIMOTO, Yasuhiro
SemRm 4, DESY Hamburg	09:40 - 10:00
3D Deep N-well CMOS pixel sensors for the ILC vertex detector	RE, Valerio 🛅
SemRm 4, DESY Hamburg	10:00 - 10:20
UK activities and progress	WILSON, Fergus 🗎
SemRm 4, DESY Hamburg	11:00 - 11:20
Current status of the Chronopixel project	SINEV, Nick 🛅
SemRm 4, DESY Hamburg	11:20 - 11:40
R&D on sensors and readout for the CLIC vertex detector	ARFAOUI, Samir
SemRm 4, DESY Hamburg	11:40 - 12:00
Physics-performance optimization of the CLIC vertex detector	ROLOFF, Philipp 🛅
SemRm 4, DESY Hamburg	12:00 - 12:20
Novel sensor technologies for tracking and vertexing	CURRÁS, Esteban
SemRm 4, DESY Hamburg	12:20 - 12:40
Simulation of ILC-type DEPFET Sensors	SCHWENKER, Benjamin
SemRm 4, DESY Hamburg	12:40 - 13:00
Super-capacitor characterization for FTD-ILD sub-detector power distribution system	ARTECHE, Fernando
SemRm 4, DESY Hamburg	12:15 - 12:35
Fiber Bragg Grating Sensors for Smart-Trackers	MOYA MARTIN, David
SemRm 4, DESY Hamburg	12:35 - 12:55

Beam Tests of the DESY GridGEM Module	MÜLLER, Felix
SemRm 2, DESY Hamburg	11:00 - 11:20
Studies of a GEM based readout for the ILD TPC	ZENKER, Klaus
SemRm 2, DESY Hamburg	11:20 - 11:40
Results from the 2012 beam test of the Asian GEM modules	TIAN, Junping
SemRm 2, DESY Hamburg	11:40 - 12:00
Production and Applications of Integrated Pixel Readouts for a Linear Collider	KRAUTSCHEID, Thorsten
SemRm 2, DESY Hamburg	12:00 - 12:20
ALICE TPC Update	BALL, Markus
SemRm 4, DESY Hamburg	16:00 - 16:20
Positive ions backflow in the LCTPC: status of the possible gating systems	GROS, Philippe
SemRm 4, DESY Hamburg	16:20 - 16:40
Hit finding and pad response function for the LCTPC using resistive Micromegas	BELLERIVE, Alain
SemRm 4, DESY Hamburg	16:40 - 17:00
Occupancy studies for the CLIC_ILD TPC with pad and pixel readout	KILLENBERG, Martin
SemRm 4, DESY Hamburg	17:00 - 17:15
Power pulsing scheme based on a back-end current source for the analog electronics vertex detectors at CLIC	of the FUENTES, Cristian
Engineering studies for the inner region of the CLIC_ILD detector concept	DUARTE RAMOS, Fernando 🛅
SemRm 4	16:50 - 17:10
Ultra Low Mass Cooling for Fine Pixel Detectors	RUIZ-VALLS, Pablo 🛅
SemRm 4	17:10 - 17:30
Forward tracking at the next e+e- collider: experimental challenges and detector desig	in VOS, Marcel 🛅
SemRm 4	17:30 - 17:50

Disclaimer: Impossible to make a summary of 24 talks in 10 minutes... \rightarrow My very personal selection

Signal/Noise

during clea off

80

60

70

Z pitch 20µm

Z pitch 50µm

Z pitch 75µm Z pitch 100µm

off / clear

gate (

90

DEPFET Carlos Marinas (Bonn) 15 **Enough headroom for safe** DEPFET current output / µA Benjamin Schwenker (Goettingen) fast speed operation Belle II PXD almost prototype of L1, L2 ILD-VXD 1st sample System demonstrator: Small thin (50 µm) DEPFET+ final ASICS + DAQ 20 µs frame readout • TB 2013: Efficiency> 99.5 %, g_q~500 pA/e⁻ 50 KHz frame rate 6 cm long DEPFET YIIY -15 time / ns -20 -10 10 20 30 50 Z Resolution [µm] **16**⊢ 14 12 Electrically active prototype of a half ladder + flipchip 2.8 µm resolution 20x20 µm² 50 µm thick 30 20 50 Simulation tuned with TB data

cmarinas@uni-bonn.de

70

Θ [degree]

60

3D Deep N-well CMOS Valerio Re (INFN)

- 'Hybrid pixel' functionalities in monolithic devices (sparsification and time stamping) with 3D integration
- Extended collecting electrode (Deep N-Well) for higher single pixel collected charge
- Move the competitive n-wells (PMOS) into the vertical direction to increase the fill factor and efficiency

MPW run bonded by Tezzaron 3 years turnaround process Many technical problems

- Fully functional 3D chips produced (SDR1)
- Characterization of the analog front end: 700 mV/fC, 40 e^{-} ENC, 5 $\mu W/pixel$
- Test beam, lab, irradiations (1 Mrad)

cmarinas@uni-bonn.de

FPCCD Yasuhiro Sugimoto (KEK)

Large prototype $6x1.2 \text{ cm}^2$ square image area $50 \mu \text{m}$ thin wafer $6x6, 8x8, 12x12 \mu \text{m}^2$ Test beam cancelled Development CO₂ plant (-40°C)

Chronopixel Nick Sinev (Oregon)

Prototype 2: all electronics inside pixels only from NMOS transistors. IBM 90 nm. 25x25 μm^2 Crosstalk and design problems

CLICPix Samir Arfaoui (CERN)

Medipix/Timepix calibration CLICPix produced 65 nm CMOS, 25x25 μ m², time slicing <10 ns Readout being prepared Medipix3 TSV done Procurement of thin sensors (mat. budget)

2D strips with charge division Esteban Currás (IFCA)

Getting the particle hit coordinate along the resistive strip (polysilicon) using the charge division method instead of double sided strips

2 cm long strips, 20 µm width, pith 80 µm

Longitudinal spatial resolution for 6MIP signal: $1.2 \% L = \sim 200 \text{ um}$

Air cooling and engineering

CLIC_ILD Fernando Duarte (CERN)

Feasibility to be demonstrated by mock-ups

Belle II Pablo Ruiz (IFIC)

Belle II David Moya (IFCA)

Environmental monitor for the Belle II vertex detector based on Fiber Bragg Grating optical sensors Control: Displacement, RH%, temperature and N2 concentration

cmarinas@uni-bonn.de

Performance of convective cooling demonstrated for DEPFETs for Belle II

Optimization studies

light quarks

0.9

Beauty eff.

0.8

CLIC vertex optimization Philipp Roloff (CERN)

- Impact of material budget in physics performance
- Compare single/double layer designs

The barrel geometry with double layers has better performance for c-tagging and btagging for low-energy jets Studies ongoing

eĦ

Forward region Marcel Vos (IFIC)

- Forward region more and more important with higher sqrt(s)
- Also very thin sensors needed (shallow tracks)
- Idea of a pixelated solution for the petals

Power pulsing

CLIC Cristian Fuentes (CERN)

- Analog power scheme based on a back ٠ end current source.
- Integrated silicon capacitors (10 μ F) ٠ connected to CLICPix with TSV.
- Silicon capacitors charged up using a back ٠ end current (60 mA) supply
- Concept demonstrated using test boards ٠

SuperCapacitors Fernando Arteche (ITA)

- Power distribution system for the FTD-ILD •
- Electrochemical capacitors with up to 25 F •
- Irradiated up to 2.3 Mrad with 20 MeV electrons ٠
- No performance degradation observed in the stress tests .

GridGEM Felix Müller (DESY)

GridGEM -> GEM with integrated support structure

Field distortions between modules strongly suppressed with a guard ring 30 % higher charge collection on 1st pad

Test beam results with PCMAG: Efficiency >95% (BUT borders)

ExB distortions in the electron path (offline corrected)

Asian GEM Junping Tian (KEK)

- Good understanding of the longitudinal diffusion pulse
- 30% charge loss found in 2012 test beam (Not observed in 2010)
- Extrapolation based on 2010 data copes with the requirements

InGrid Thorsten Krautscheid (Bonn)

- Micromegas on a Timepix
- Production moved from single chip to wafer scale
- Test beam: Some defects in the active area
- Module with ~100 chips is under preparation

Resistive Micromegas Alain Bellerive (Carleton)

- Resistive layer film bonded to the readout pads with an insulating spacer
- Model of the Pad Response Function obtained: from the charge deposition to the hit reconstruction

 \rightarrow Transverse/longitudinal diffusion, induction gap, preamp. response, resistive foil+glue

- Resolution ~100 μm if TB2013 data extrapolated to final magnetic field

Thank you

LINEAR COLLIDER COLLABORATION

cmarinas@uni-bonn.de

