

Summary of the Polarization Working Group

Conveners: Tom Markievicz (SLAC), <u>Sabine Riemann</u> (DESY)

ECFA LC Workshop 2013, Hamburg May 27-31, 2013

1

Precision measurement of polarization, collision effects:

Moritz Beckmann, Annika Vauth, Benedikt Vormwald, Burak Bilki, Tony Hartin

Topics

In situ energy measurement using $Z\gamma \rightarrow \mu\mu\gamma$

Graham Wilson

Joint session Polarization / Injector WG: Polarized Positrons

Andriy Ushakov, Wanming Liu, Friedrich Staufenbiel, Tsunehiko Omori

Beam polarization physics potential at the staged approach

Gudrid Moortgat-Pick

Precision polarimetry

Goal: △P/P = ±0.25

Analysing power: 0.2% Laser helicity: 0.1%

 Δ P/P contribution due to detector non-linearity must be <0.1%

→ Calibration is essential

- B. Vormwald, J. List
- high-precision calibration system for the Compton polarimeter <> correct detector non-linearity
- Achieved:

non-linearity below 0.2% in the dynamic range of the polarimeter A. Vauth, J. List

- Quartz detector as possible option for upstream polarimeter
- Self-calibration (?)
 - Large number of photo-electrons per Compton e-
 - resolution of single electron peaks possible
- Prototype tested at DESY, detailed analysis is still ongoing

ECFALC 2013

Spin tracking

Goal: △P/P = ±0.25%

Analysing power: 0.2% Laser helicity: 0.1% Detector linearity: 0.1%

+ spin transport through IP

M. Beckmann, T. Hartin, J. List

 beam collision effects and spin transport behind IP to downstream polarimeter

- T-BMT Spin precession and spin flip due to beamstrahlung
- Simulation with Guinea-Pig++
- Directly connected to transport simulation

ECFALC 2013

Summary polarisation WG

Spin transport

Beamstrahlung:

ECFALC 2013

- Correlates energy loss and depol
- already difficult to measure P after collision assuming ideal conditions

It is crucial to know laser spot size and position

Summary polarisation WG

Strong field effects

Y is a natural parameter indicating the scale of external fields. (ILC: Y≈0.24, CLIC: Y=4.9)

A more exact Beamstrahlung calculation

- CAIN, Guinea-Pig: e- interact with one bunch, no crossing angle
- New solutions for charged particles in two
 non-collinear crossed fields being developed

Y values vary independently throughout the bunch collisions

T. Hartin

Investigating In-Situ √s Determination

with $\mu\mu(\gamma)$

Precision measurements of Masses rely on knowledge of absolute Ecm scale and luminosity spectrum

Two methods: A) Use angles only, measure m_{12} / \sqrt{s} . Use known m_z to reconstruct \sqrt{s} . P) Use muon momenta. Measure $E_1 + E_2 + p_{12}$.

ECFALC 2013

- Use muon momenta measurements
- beam spread, ISR, FSR, beamstrahlung
 →Prospects to determine absolute center-of mass energy scale (<10ppm)

Summary Table			(Statistical errors only)	
ECM (GeV)	L (inv fb)	Δ(√s)/√s Angles (ppm)	∆(√s)/√s Momenta (ppm)	Ratio
250	250	64	4.0	16
350	350	65	5.7	11.3
500	500	70	10.2	6.9
1000	1000	93	26	3.6

< 10 ppm for 200 – 500 GeV CoM energy

Joint Session Polarization / Injector WG

ECFALC 2013

Summary polarisation WG

8

Polarized Positrons

Positron production @ ILC: helical undulator

- − Circularly polarized photons → ILC e+ beam is polarized
- Intensity of e+ beam depends on length of undulator, and on energy of e- beam
- Degree of e+ polarization: depends on undulator parameters and beam energy

147m active length for Ecm = 500 GeV Pe+ \approx 30% }

- 147m active length for Ecm = 375 GeV Pe+ $\approx 30\%$ } TDR
- New study of A. Ushakov:

231m active length for Ecm = 250 GeV

Pe+ = 30%

with normal 5Hz scheme and RDR undulator

- Degree of e+ polarization can be enhanced up to 40% to 60% by photon beam collimation
 - for more details see talks of W. Liu, F. Staufenbiel and A. Ushakov

Positron target:

- High energy deposition in the target requires fast rotating target wheel
- Design exists, R&D still needed (rotating vacuum seal)

? Backup solution?

 Conventional e+ source (6GeV e- beam on W target) under consideration

Details: see talks in injector WG sessions

 \rightarrow <u>unpolarized</u> source !!

The LC physics offer

- Staged approach:
 - $-\sqrt{s=240 \text{ GeV}}$, Higgs mass, couplings
 - $-\sqrt{s=350 \text{ GeV}}$, Top mass, Higgs width, couplings
 - $-\sqrt{s=500 \text{ GeV}}$, Top Yukawa, trilinear Higgs coupling, ...
 - (\sqrt{s} =91 GeV, `Precision frontier')
 - $-\sqrt{s=1000 \text{ GeV}}$, Precision physics at high energy
- `New' features, impact on 'quality' (and quantity):
 - Flexible energy (threshold scans)
 - Polarized e- and e+ beams

What has changed since Polarisationreport?

ECFA LC2013@Hamburg

Gudrid Moortgat-Pick

All is still valid !

Summary of the summary

Precision measurements (P, E)

- Good progress made in
 - Spin tracking and strong field effects studies
 - detector calibration and development for Compton polarimeter
- precise 'in situ' \sqrt{s} determination using $Z\gamma \rightarrow \mu\mu\gamma$

Joint session Polarization and e+ source group

Undulator-based source → e+ beam polarization > 30%,

with photon collimator up to 60%

- ILC as Higgs factory: if full undulator length used, no 10Hz scheme necessary, P(e+) > 30%
- R&D for the positron target and capture device still needed

Physics case for e+ polarization is as strong as it ever was