Testing strong field QED with a laser on the electron beam at ILC/CLIC

Stefano Porto

with Anthony Hartin and Gudrid Moortgat-Pick

ECFA Linear Collider Workshop 2013,

Hamburg, May 28th, 2013

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

Strong field QED

- SLAC Experiment 144 and proposal at ILC/CLIC
- Testing Zel'dovich quasi-levels and the Unruh effect
- Onclusions and outlook

See also Tony Hartin's talk at the working group RD9.

QED in strong external electromagnetic fields

Schwinger critical field: vacuum polarization. Ex. laser $I \sim 10^{30} \text{ W/cm}^2$.

Can develop on magnetars, heavy ions collisions, and ... linear colliders.

•
$$\Upsilon \equiv \frac{e}{m_e^3} \sqrt{|(F_{\mu\nu} p^{\nu})^2|} \sim \gamma \frac{E}{E_c} \text{ or } \gamma \frac{B}{B_c}$$

'Intensity' of the external field. Vacuum is polarized at $\Upsilon \sim 1$.

•
$$\eta = \frac{e}{m_e} \sqrt{|A_\mu A^\mu|}.$$

Describes the multiplicity of photons from the external field in the initial states.

Strong fields at linear colliders

High luminosity: $\mathcal{L} = f \frac{n_1 n_2}{4\pi \sigma_x \sigma_y}$ needs squezeed bunches (small σ_x , σ_y) \implies large $\Upsilon \sim \frac{1}{\sigma_x + c \sigma_y}$

Intense charge bunches \longrightarrow strong field associated

Machine	LEP II	SLC	ILC-1TeV	CLIC-3TeV
Energy (GeV)	94.5	46.6	500	1500
↑ _{average}	0.00015	0.001	0.27	3.34

 e^- sees 2 almost anticollinear constant crossed fields: $|\mathbf{E}| = |\mathbf{B}|$, $\mathbf{E} \cdot \mathbf{B} = 0$, static.

 \star high density of photons + wavefunction overlap \Rightarrow external field \sim classical field.

Strong fields at linear colliders

Beamstrahlung; coherent pair production [Chen, Telnov '89]; incoherent pair production. Implemented in CAIN [Yokoya] and GUINEAPIG [Schulte].

Need to consider all the processes in the strong field [SP, Hartin, Moortgat-Pick '13].

- Generalized Dirac equation: Furry picture [Furry '51]
- Classical electron motion: Quasi-classical operator approach [Baĭer & Katkov '51]

Strong Fields/Nonlinear QED to be considered in $\gamma\gamma$ interactions [Reiss '51], in particular:

- $\gamma\gamma$ -colliders [Ginzburg et al '81], [TESLA TDR].
- Laser physics . . .

SLAC Experiment 144

www.slac.stanford.edu/exp/e144/

- SLC Final Focus Test Beam (FFTB): 46.6 GeV
- \bullet Laser peak intensities: $\approx 0.5 \cdot 10^{18} \ W/cm^2$
- Few weeks of operations

[Bamber et al. '99].

•
$$I = \frac{1}{377\Omega} E_{lab}^2$$
, $I_{max} \approx 0.5 \cdot 10^{18} \text{ W/cm}^2$

•
$$\eta^2 = 3.7 \cdot 10^{-19}$$
 / λ^2 , $\eta_{\max} \sim 0.4$

•
$$\Upsilon_e = \eta \frac{p \cdot k}{m^2 c^4}$$
, $\Upsilon_{e, \max} \sim 0.27$

• Terawatt pulses at $\lambda_{IR} = 1053$ nm and $\lambda_g = 527$ nm, circular/linear polarized laser beams.

Nonlinear Compton scattering at E144, $e^- + n\omega_0 \rightarrow e^- + \gamma$

The rates are important, not the bad defined cross sections [Nikishov & Ritus '64]. Observed dependence on the number n of absorbed γ s.

Multiphoton Breit-Wheeler pair production at E144, $\gamma + n\omega_0 \rightarrow e^+e^-$

Theory: [Nikishov & Ritus '64-'65]. Dependences on the number n_{γ} and on Υ .

Adapted from [McDonald '98], [Bamber et al. '99].

FIG. 49. Number of positrons per laser shot as a function of $1/Y_{\gamma}$. The circles are the 46.6 GeV data whereas the squares are the 49.1 GeV data. The solid line is a fit to the data.

Today and next future:

- Daresbury, FZD: 10 MeV- e^- and high intensity ($\eta\sim$ 10).
- \bullet Future very high intensities: XFEL $10^{27}~W/cm^2,~\text{ELI}~10^{26}~W/cm^2.$

No high energy physics.

Today and next future:

- Daresbury, FZD: 10 MeV- e^- and high intensity ($\eta \sim 10$).
- \bullet Future very high intensities: XFEL $10^{27}~W/cm^2,~ELI~10^{26}~W/cm^2.$

No high energy physics. Next linear collider?

Powerful electron beams 175-500 GeV: with similar laser as E144, $\Upsilon\gtrsim$ 1:

Physical case for

- pair production
- vacuum polarization

Today and next future:

- Daresbury, FZD: 10 MeV- e^- and high intensity ($\eta \sim$ 10).
- \bullet Future very high intensities: XFEL $10^{27}~W/cm^2,~ELI~10^{26}~W/cm^2.$

No high energy physics. Next linear collider?

Powerful electron beams 175-500 GeV: with similar laser as E144, $\Upsilon\gtrsim$ 1:

Physical case for

- pair production
- vacuum polarization

Possibilities: ADD-ON! no (compelling) DESIGN CHANGES

- Exploiting the polarimeter laser or a specific laser on the beam dump.
- Exploiting Test-beam or parasitically the electron beam.
- Performing the same experiment on the positron beam (dump or not).

Side effect: electron mass-shift

The effective mass of an electron in an electromagnetic wave [Brown and Kibble '64], [Kibble '64]

$$\overline{m} = m\sqrt{1+\eta^2}, \qquad \eta = rac{eE}{m\omega_0 c}$$

and the correspondent quasi-momentum $q_{\mu} = p_{\mu} + rac{\eta^2 m^2}{2k \cdot p} k_{\mu}$ is such that $q^2 = \overline{m}^2$.

Side effect: electron mass-shift

The effective mass of an electron in an electromagnetic wave [Brown and Kibble '64], [Kibble '64]

$$\overline{m} = m\sqrt{1+\eta^2}, \qquad \eta = rac{eE}{m\omega_0c}$$

and the correspondent quasi-momentum $q_{\mu} = p_{\mu} + \frac{\eta^2 m^2}{2k \cdot p} k_{\mu}$ is such that $q^2 = \overline{m}^2$.

Searching structures in the e^+e^- invariant-mass spectrum.

Darmstadt [Schweppe et al '83] and CERN-NA-046 [Bassompierre et al. '91] picks?

$$\overline{M}^2 = (q_1^2 + q_2^2) \propto \sqrt{n}$$

Complications because of \overline{m} .

$$1+\frac{\Delta}{1+\eta^2} \leq \frac{M^2}{4m^2} \leq 1+\Delta$$

No decisive evidence for the mass shift at E144 [Bamber et al. '98].

Observed in Rochester [Meyerhofer et al. '95].

Radiative transitions between Zel'dovich quasi-levels in a laser

System H_0 interacting with em field $H_f + H_i$ under a *T*-periodic force $H_1(t)$: NEW!

$$H=H_0+H_1(t)+H_f+H_i$$

 \Rightarrow quasi-levels spectra with energy gaps $m\cdot\hbar\omega=\hbar2\pi/T$ [Zel'dovich '67].

Transitions and radiations $m' \cdot \hbar \omega$ from ground state to excited state and viceversa due to H_1 .

Low I laser to the IP, frequency-tuned to stimulate quasi-levels transitions.

Outlook: probing the Unruh effect

A gravity accelerated observer out of a black hole sees Hawking radiation

[Hawking '74]:

$$T = \frac{\hbar g}{2\pi ck}$$

Equivalence Principle An accelerated observer in a region without gravity feels a radiation with a thermal bath [Fulling '72, Davies '75, Unruh '76]:

$$T = \frac{\hbar a}{2\pi ck}$$

Testing strong field QED with a laser on the electron beam at ILC/CLIC Hamburg, May 28th, 2013 13 / 14

Outlook: probing the Unruh effect

An electron observer Thomson-scatters with the Unruh termal bath photons.

Unruh radiation:

Larmor radiation:

・ロト ・同ト ・ヨト ・ヨト

3

$$\frac{dU_{\text{Unruh}}}{dt} = \frac{\hbar r_e^2 \left(\frac{eE}{m}\right)^4}{90\pi c^6} = \frac{\hbar r_e^2 a^4}{90\pi c^6} \propto T^4 \qquad \qquad \frac{dU_{\text{Larmor}}}{dt} = \frac{\hbar 2e^2 a^2}{3c^3}$$

 $\frac{dU_{\text{Unruh}}}{dt} \sim \frac{dU_{\text{Larmor}}}{dt} \text{ at } \sim 100 \cdot \textit{E}_{\text{cr}}. \text{ With 500 GeV electrons we would need:}$ $E_{\text{lab}} \sim 10^{13} \text{ V/m}, \ \textit{I}_{\text{laser}} \sim 10^{19} \text{--}10^{20} \text{ W/cm}^2$

Large background. Can be observed at all? Debate still open [Akhmedov, Singleton '07], [Martín-Martínez, Fuentes, Mann '11], [Ford, O'Connell '05].

- Strong external fields affect the motion and the states of particles (nonlinear QED).
- E144 studied the effect of a laser on a HE electron beam, in particular nonlinear Compton scattering and pair production.
- Next LC: opportunity to repeat E144, at higher energy and statistics. It would be important to discuss it SOON.
- Possibility of performing the same experiment on the positron beam.
- Studying mass-shift effects.
- Testing Zel'dovich quasi-levels theory.
- Check whether is possible to detect the Unruh radiation.

Invitation to PIF2013

Physics in Intense Fields

and the second second

R

DESY, Hamburg 9th-11th July 2013

Topics: Strong field QED/QFT in

- LCs
- LASERS
- Crystals
- Heavy ion collisions etc.

Chair: Tony Hartin

Registration deadline: 28th June

(Abstracts deadline: 31st May)

https://indico.desy.de/event/pif2013

Thanks!

< □ > < 同 >

Backup: Compton scattering at E144

Scattering rates observed at E144 in terms of electron energy.

$$n_{\gamma} = 2, 3$$
-edges.

[McDonald '98]

[McDonald '98]

[Meyerhofer et al. '95]

Electrons (up to 175 keV) from the ionization of Kr by a laser:

- Laser: $\lambda = 1053$ nm, 1 ps, $I_{\sf peak} \simeq 10^{18} \; {\sf W}/{\sf cm}^2$
- Relativistic mass-shift associated with the electrons quiver motion is apparent;
- Electron trajectory obtained without considering the mass-shift disagrees with the experimental observations.

