CLIC Solenoid Simulations

Yngve Inntjore Levinsen, Barbara Dalena, Rogelio Tomás Garcia Thanks to: Michele Modena, Antonio Bartalesi

ECFA 2013 Hamburg

30. May, 2013

- Motivation
- Deterministic Simulation Procedure
- Anti-Solenoid Effects
- Tuning Simulations

Detector Solenoid for lepton colliders

- Large (horizontal) crossing angle -> strong (horizontal) magnetic field on beam -> strong (vertical) orbit deflection
- Solenoid field/orbit deflection produces:
 - Dispersion at IP.
 - Coupling at IP (mainly y-x').
 - Incoherent synchrotron radiation ->
 - emittance increase (not recoverable)

Detector Solenoid for lepton colliders

- Large (horizontal) crossing angle -> strong (horizontal) magnetic field on beam -> strong (vertical) orbit deflection
- Solenoid field/orbit deflection produces:
 - Dispersion at IP.
 - Coupling at IP (mainly y-x').
 - Incoherent synchrotron radiation -> emittance increase (not recoverable).

Detector Solenoid for lepton colliders

- Large (horizontal) crossing angle -> strong (horizontal) magnetic field on beam -> strong (vertical) orbit deflection
- Solenoid field/orbit deflection produces:
 - Dispersion at IP.
 - Coupling at IP (mainly y-x').
 - Incoherent synchrotron radiation -> emittance increase (not recoverable).

- Basic idea: Start with an ideal distribution at IP, track backwards through beamline without synchrotron radiation, finally track forward with synchrotron radiation.
- Obtains: The luminosity loss due to ISR from the solenoid field alone, excluded of losses due to optics distortions (since beam is already corrected).

- Basic idea: Start with an ideal distribution at IP, track backwards through beamline without synchrotron radiation, finally track forward with synchrotron radiation.
- Obtains: The luminosity loss due to ISR from the solenoid field alone, excluded of losses due to optics distortions (since beam is already corrected).

"Deterministic" Simulation Procedure

"Deterministic" Simulation Procedure

New Solenoid+Anti-Solenoid Field Simulation

Longitudinal Field

7 / 17

de

New Solenoid+Anti-Solenoid Field Simulation

7 / 17

Deterministic Simulation: Orbit Deflection

Deterministic Simulation: Luminosity Loss

(statistical error from multiple simulations)

Effect of the Anti-Solenoid

Longitudinal Field

Courtesy: A. Bartolesi 10 / 17

Effect of the Anti-Solenoid

10 / 17

Deterministic Simulation: Orbit Deflection

Deterministic Simulation: Luminosity Loss

	w/o anti-solenoid [%]	w anti-solenoid [%]	
Relative loss	5.0	4.1	

The main purpose of the anti-solenoid is to protect the permanent magnet.

Should be able to end up with **same luminosity loss** as "forward-backward-forward" simulations if we find the ideal correction?

- \bullet 5 sextupoles in BDS -> 5 horizontal and 5 vertical knobs.
- QD0 vertical displacement provide one additional knob.
- See e.g. PRSTAB 15, 051006 for details about these knobs.
- Algorithm: Iterate over knobs and do a parabola fit for each.

Should be able to end up with **same luminosity loss** as "forward-backward-forward" simulations if we find the ideal correction?

- 5 sextupoles in BDS -> 5 horizontal and 5 vertical knobs.
- QD0 vertical displacement provide one additional knob.
- See e.g. PRSTAB 15, 051006 for details about these knobs.
- Algorithm: Iterate over knobs and do a parabola fit for each.

Vertical sextupole knobs in the FFS

Tuning Simulations

Tuning Simulations

• We get about 4% luminosity loss with the latest SiD field map.

• And about 5% luminosity loss with the anti-solenoid off.

- \bullet Tuning studies so far show $\sim 7\%$ luminosity loss or less.
 - Using SiD + anti-solenoid.
 - Studies are ongoing.
 - Fluctuating results makes these studies time-consuming and difficult to analyze.
- Improved solenoid field map give similar results as before.

• We get about 4% luminosity loss with the latest SiD field map.

$\bullet\,$ And about 5% luminosity loss with the anti-solenoid off.

- \bullet Tuning studies so far show $\sim 7\%$ luminosity loss or less.
 - Using SiD + anti-solenoid.
 - Studies are ongoing.
 - Fluctuating results makes these studies time-consuming and difficult to analyze.
- Improved solenoid field map give similar results as before.

- We get about 4% luminosity loss with the latest SiD field map.
 - And about 5% luminosity loss with the anti-solenoid off.
- $\bullet\,$ Tuning studies so far show $\sim 7\%$ luminosity loss or less.
 - Using SiD + anti-solenoid.
 - Studies are ongoing.
 - Fluctuating results makes these studies time-consuming and difficult to analyze.
- Improved solenoid field map give similar results as before.

- We get about 4% luminosity loss with the latest SiD field map.
 - And about 5% luminosity loss with the anti-solenoid off.
- $\bullet\,$ Tuning studies so far show $\sim 7\%$ luminosity loss or less.
 - Using SiD + anti-solenoid.
 - Studies are ongoing.
 - Fluctuating results makes these studies time-consuming and difficult to analyze.
- Improved solenoid field map give similar results as before.

