Design Studies for BeamCal using new Beam Parameters

Lucia Bortko, DESY – Zeuthen

ECFA Linear Collider Workshop | DESY - Hamburg | 27-31 Mai 2013

Lucia Bortko | Design studies for BeamCal using new beam parameters | 2013-05-28 | Page 1/13

Goal and Motivation

Increase efficiency of reconstruction on top of the background (BG) for showers produced by single high energy electrons (sHEe) in **BeamCal** The way to go: increase signal-to-noise ratio (SNR) in pads Change of design: new segmentation keeping the number of channels

Beam Calorimeter for ILC

Beam parameters from the ILC Technical Design Report (November 2012)

- Nominal parameter set
- Center-of-mass energy 1 TeV

BeamCal aimed:

- Detect sHEe
- Determine Beam Parameters
- Masking backscattered low energetic particles

BeamCal Segmentation

pad sizes are the same

pads sizes are proportional to the radius

Similar number of channels

Energy Deposition due to Beamstrahlung

- Beamstrahlung (BS) pairs generated with Guinea Pig
- Energy deposition in sensors from BS simulated with Geant4
 - → considered as Background (BG)
- RMS of the averaged BG
 - → considered as noise (for SNR)

 E_{dep} is the same, but E_{dep} /pad is different!

Single High Energy Electrons

- sHEe of different energies (10, 20, 50, 100 GeV) are sent to each sensor ring
- Showers are simulated with Geant4
- Energy deposited in shower core
 → considered as signal

Signal-to-noise ratio:

 $SNR = \frac{signal from HE electron}{RMS from background}$

Example of shower from 100-GeV electron with core in ring at R = 8 cm

Evaluation around the Shower Maximum

Lucia Bortko | Design studies for BeamCal using new beam parameters | 2013-05-28 | Page 7/13

Signal and RMS for both Segmentations

RMS from Background (in 10th layer)

SNR for 100 GeV Electron

Lucia Bortko | Design studies for BeamCal using new beam parameters | 2013-05-28 | Page 9/13

Efficiency for 200 GeV Electron

Charge range estimate

For Diamond sensor pad thickness 300 µm:

- Charge collected from MIP: 2.44 fC

- Maximum charge collected – for shower from 500 GeV electron: 12214 fC

(correspond to about 5000 MIPs)

Conclusions

- > New beam parameters has been released in ILC TDR (November 2012)
- Performance of Beamcal for two different sensor segmentations was compared
 - Number of readout channels is kept similar
 - Signal from sHEe nearly independent of the segmentation
 - Energy deposition per pad from beamstrahlung differs significantly
 - Proportional segmentation improves the signal-to-noise ratio
 - Proportional segmentation gives better reconstruction efficiency
- > The charge range has been estimated
 - Collected charge per pad from sHEe nearly independent of the segmentation
 - Collected charge per pad from BS for US in 6 times more than for PS

Thank you for your attention!

SNR for 50 GeV Electron

SNR for 20 GeV Electron

SNR for 10 GeV Electron

Lucia Bortko | Design studies for BeamCal using new beam parameters | 2013-05-28 | Page 16/13

Charge range estimate

For Diamond sensor pad thickness 300 µm:

- Charge collected from MIP: 2.44 fC
- Maximum charge collected for shower from 500 GeV electron: 12214 fC (correspond to about 5000 MIPs)

Distribution of the collected charge per pad for 500Gev electron showers