"Results From a Test Beam Study

of a Fully Assembled Sensor-Plane

for BeamCal"

Olga Novgorodova - IKTP Dresden On behalf of FCAL Collaboration 27-30 May 2013

DESY

Forward Calorimeters

Future Prototype

Current Prototypes

Test Beams Results

Olga Novgorodova | ECFA Meeting | 28 May 2013 | DESY | Page 2

Forward Region

- Precise luminosity measurement,
- Hermeticity (electron detection at low polar angles),
- Assisting beam tuning (fast feedback of BeamCal data to machine)

Challenges: radiation hardness (BeamCal), high precision (LumiCal) and fast readout (both) Olga Novgorodova | ECFA Meeting | 28 May 2013 | DESY | Page 3

Future Prototype:

AIDA infrastructure for the future prototype Metal structure for the full calorimeter prototype is ready Next test beam with 5 planes inter-spread with tungsten plates 5 tungsten plates were assembled into the permaglass frames

5 sensor planes will be assembled this year for two sensor types (Si and GaAs)

Test beam is expected 2013-2014

Prototype Structure

> GaAs sensor planes – 22 all together, Fanout PCB for 32 channels

Front End Electronics:

LumiCal FE and ADC ASICs (350 nm AMS Technology → new development in 180 nm)

Two Gains + Two feed back technologies (R_f and MOS) → 60 ns peaking time Compatible with both Si and GaAs

→ Used for all Test Beams (2010-2011)

BeamCal prototype for a few channels is designed and is currently under test (180 nm mixed-signal technology)

Test beams – Hamburg (DESY II)

- 3 scintillators for trigger
- 3 pairs of single sided Si strip detectors (3x3 cm²)
- Strip pitch of 25µm, readout pitch of 50µm

• Next Test Beam → EUDET Pixel Telescope

P1.....

27 23 29 28

22 25 30 32

Read Out

> Two ADC \rightarrow Two sampling time (CAEN ADC \rightarrow 2 ns, ASIC ADC \rightarrow 50 ns)

- > Two ADCs measurements were compared and correlated to each other
- > Analysis → Amplitude, Integral, Deconvolution Amplitude (Was designed to be implemented on chip fast analysis → reducing the processed data)

Spectra

Pedestals, Amplitude, Integral and Deconvoluted amplitude spectra are collected

Fitted by Gaussian and Landau& Gauss convoluted functions

MPV of the spectrum represents the signal

Sigma of the pedestal distribution – noise

S/N = MPV/Pedestal Sigma

In addition:

CMN was detected and subtracted

S/N Stability

Uniform distribution for tree methods

Amplitude and Integral methods showed slight increase Deconvolution method is more feedback dependent

Signal Size vs HV

Charge Collection Efficiency as a function of voltage for a few pads in the lab and on the test beam. CCE = ratio between collected and generated charge in the pad. Generated charge is calculated from GEANT3 simulation. In the saturation CCE = 42%

Pads Gap Investigation (TB2011)

- > Tracks are reconstructed from 3 telescope planes with linear fit
- > 2010-2011 studies

- > Signal sum (MPV) in stripes between 2 pads is presented.
- > Signal sum (MPV) of two pads shows decrease on ~15% in 200um gap between pads

Multiple Particle Irradiation

$W \rightarrow HH$

Blue – MPV from the fit

Red – Mean value of histogram

Simulation is missing

MC Simulation

Particle Gun definition:

- Incident particles: e-
- Beam energy: 4GeV
- Gauss distribution of beam with $\sigma = 3 mm$
- Energy deposition per layer is compared with measured → Not consistent jet in the tail of the shower

Conclusions

- Two GaAs sensor planes were tested at the electron beam in 2010-2011.
- Functionality of the chain: FE ASIC + ADC ASIC + fan-out + sensors, positively verified on test beam

Result:

- Operation at room temperature & Low leakage current
- > 3 methods (Amplitude, integral, Deconvolution) with stable S/N
- High S/N ratio
- Noise is capacitance dependent
- CCE up to 50% in the HV saturation
- Radiation hardness up to 1.5MGy
- Spectra uniformity in central part of pads
- ~15% loss of signals in gaps between pad

Future:

 AIDA infrastructure + 5 FE Boards + 5 Sensors → Shower profile measurements → Comparison with GEANT4

Thank you for your attention!

Olga Novgorodova | ECFA Meeting | 28 May 2013 | DESY | Page 17

Radiation Degradation

- The CCE as a function of accumulated dose for two pads of GaAs sensor sector
- The CCE as a function of applied voltage for the same pad of GaAs sensor sector before and after irradiation

S/N (Amplitude Method)

Noise as a function of pad area

• The amplitude method shows stable amplitudes for all channels, but S/N is different

• Noise shows the dependence on the pad capacitance

Different DAQ and ADC

Purpose: See difference in operation with different ADCs to be able to compare the signals.

Allowed to see CMN (but not enough channels to subtract) S/N 11-22

Compare two ADCs

10 14

°2

P1].

9 13

5 12

27 23 29 28

22 25 30 32

21 24 26 31

°8 11 95

17 20

16 19

R12

R2 R1

Longitudinal shower distribution

laboration

 $S_{total} = \sum S_{t}$; where i – active pads

The energy deposited dependence by tungsten radiation lengths for experimental data and MC simulation, respectively

22nd FCAL Collaboration Workshop | 2013 | IFJ PAN| Poland

