Luminosity measurement at 500 GeV and 1 TeV ILC

I. Božović-Jelisavčić¹, <u>S. Lukić</u>¹, <u>M. Pandurović</u>¹, I. Smiljanić¹ and the FCAL Collaboration

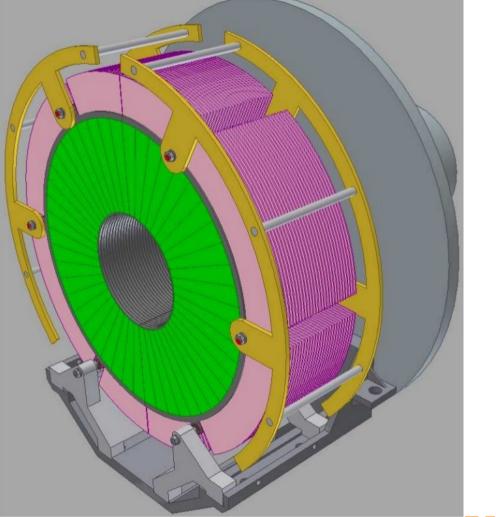
¹Vinča Institute of Nuclear Sciences, University of Belgrade, Serbia

Luminosity measurement at ILC

• Measurement using the Bhabha scattering as the gauge process

$$L = \frac{N_{Bh}(\Xi(E_{1,2}^{lab}, \Omega_{1,2}^{lab}))}{\sigma_{Bh}(Z(E_{1,2}^{CM}, \Omega_{1,2}^{CM}))}$$

- Precision ~0.6 permille at LEP
- A number of systematic effects limiting precision, *at future colliders notably the beam-beam effects*
 - Luminosity >2 orders of magnitude higher than @LEP
 - Higher energy



Luminosity Calorimeter

- Two W-semiconductor sandwich-calorimeters (30 layers)
- One at each side of the IP, at 2.5 m
- Segmentation in r, φ
- Molière radius ~1cm
- 4-vector reconstruction
- Fiducial volume in the angular range 41-67 mrad (2.3-3.8°)

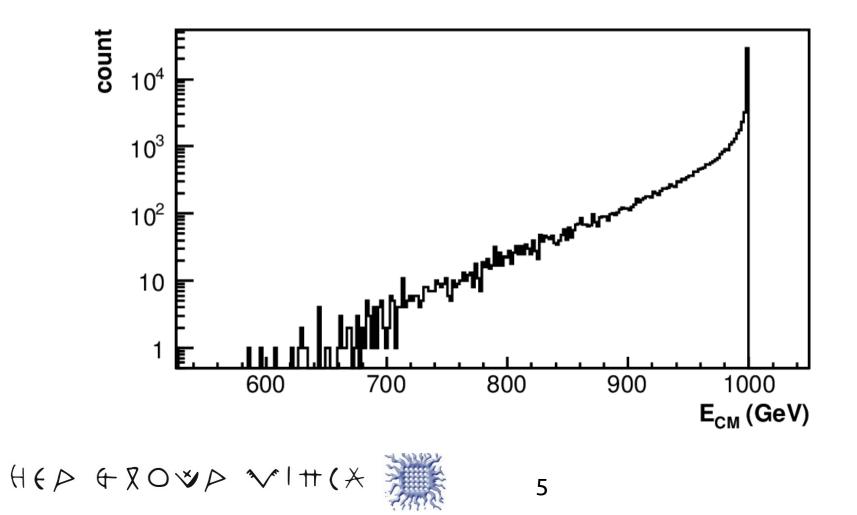
HEP & XOVP VIH(X

Beam-beam effects

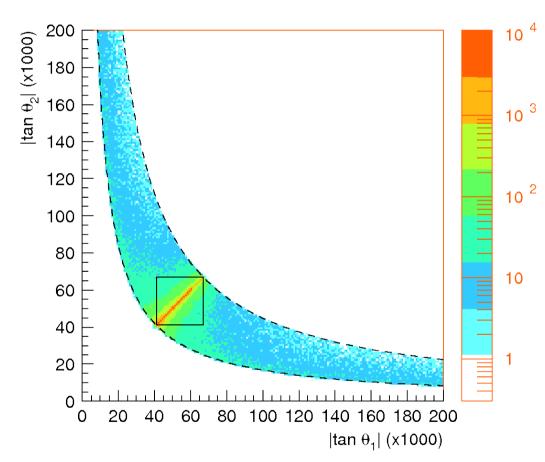
- EM interaction at bunch crossing
 - $\gamma \sim 10^6$
 - "Pinch" effect strong focusing of the bunches
 - Beamstrahlung (before collision)
 - Energy loss
 - Shift of CM in the phase space **Counting loss**

4

É


• *EM deflection* of the final charged particles – minor additional counting loss

Energy loss


• Luminosity spectrum at 1TeV ILC (Guinea-Pig, beam parameters from ILC TPR 2011)

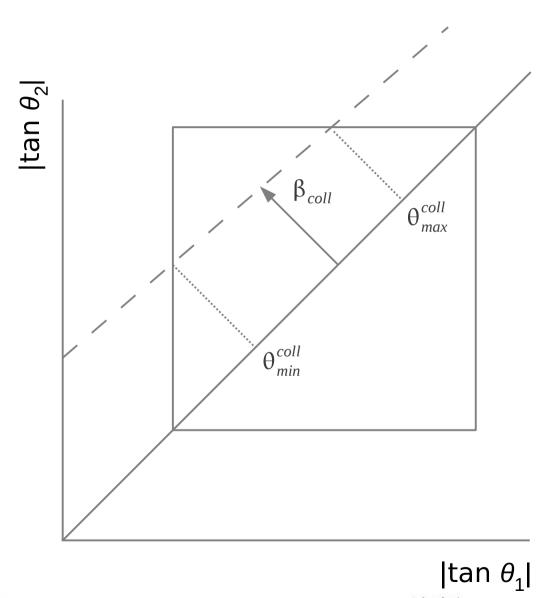
Angular loss

- Final angles of the electron vs. the positron
 (Simulation of Bhabha events using Gunea-Pig and BHLUMI)
- Final angles show
 Lorentz boost along the beam axis

Bhabha scattering and the beambeam effects

- ISR and Beamstrahlung *before collision* escape detection
- FSR and Beamstrahlung of the final particles summed with electrons in the calorimeter
- Reconstructed kinematics of the collision frame (E_{CM} , β , θ)

Beamstrahlung, ISR



Boost of the polar angles

- Among events with a given β_{coll} (dashed line), the angular acceptance loss can be analytically calculated

 $\frac{d \sigma}{d \theta}$

d θ

- Correct by the weighting factor

 θ_{min}

 θ^{coll}

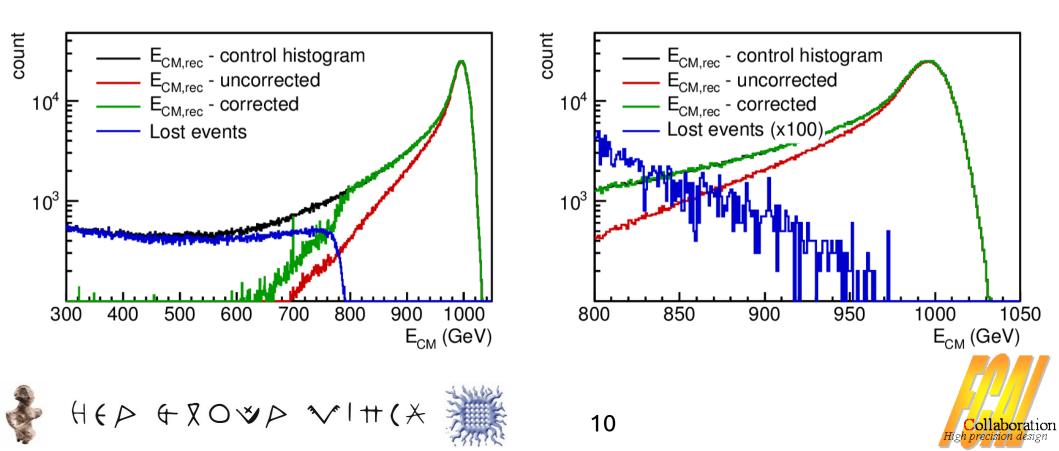
8

Test by simulation

- Bhabha events
 - Initial 4-momenta generated by Guinea-Pig
 - Final 4-momenta generated by BHLUMI at a fixed energy, then scaled and Lorentz-transformed into the Guinea-Pig frame
 - Tracking of final electrons in Gunea-Pig
- Interaction with the detector (approximation)
 - Summation of all 4-momenta within 1 Molière radius of the most energetic shower inside FV
 - E and θ smearing by addition of random Gaussian fluctuation matching detector resolution
- Beam-parameter variations

HEP & XOVP VIH(X

- $q, \sigma_{x,y,z}$ variation by ± 10% ± 20%
- Beam misalignment in x and y by up to 1σ beam size
- Total 25 simulations at 500 GeV and 25 simulations at 1 TeV


9

Results of the angular-loss correction

- Guinea-Pig + BHLUMI
- CM energies of Bhabha events (after emission of ISR, LumiCal energy response included)

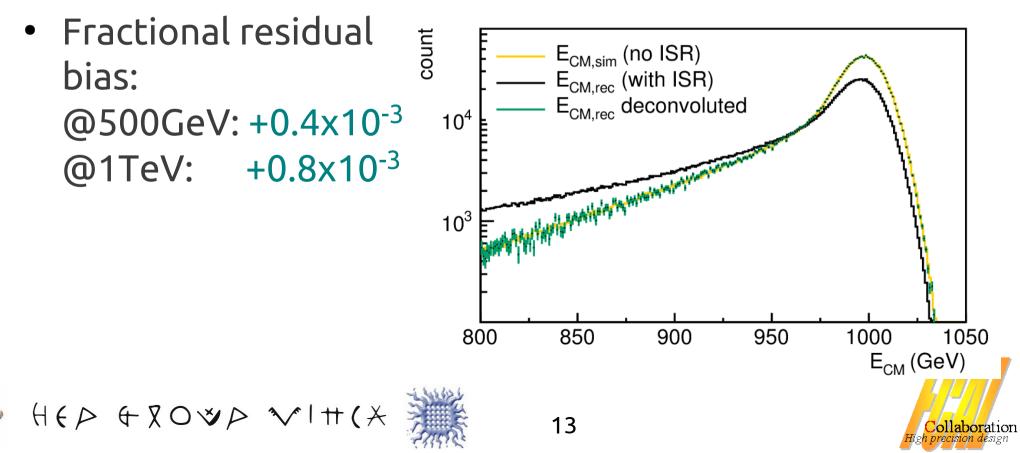
Results of the angular-loss correction

- To quantify the agreement, the integral count in the top 20% of CM energy after correction was compared to the control histogram:
- Results for 25 cases of beam-parameter variation agree within statistical uncertainties
- Fractional residual bias averaged over 25 sims

	•			
	500 GeV	1 TeV		
Before correction	12.8 %	14.0 %		
After $\boldsymbol{\beta}_{coll}$ correction	-1.1 x 10 ⁻³	-0.7 x 10 ⁻³		
Fraction $\beta_{coll} > \beta_{max}$	1.5 x 10 ⁻³	1.4 × 10 ⁻³		
Corrected	+0.4 x 10 ⁻³	+0.7 x 10 ⁻³		
IEP & XOVP VI#(X) 11				

Systematic effects

- Off-axis ISR (the "lost" events)
- Most energetic shower occasionally not containing the final electron
- Simplified expression for $d\sigma/d\theta$ (~ θ^{-3})
- Assumption of clean separation of ISR from FSR



ISR deconvolution

- Required as a basis for the cross-section calculation
- Useful for the reconstruction of the luminosity spectrum in the upper 20% of *E*

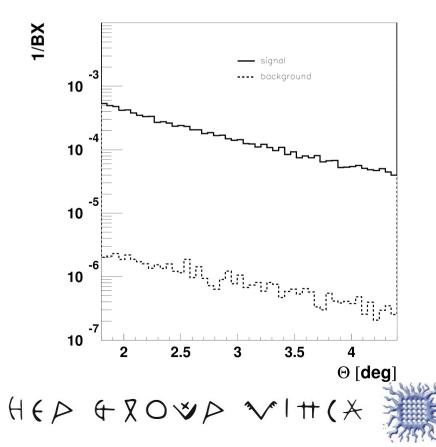
Requirements on the cross-section calculation

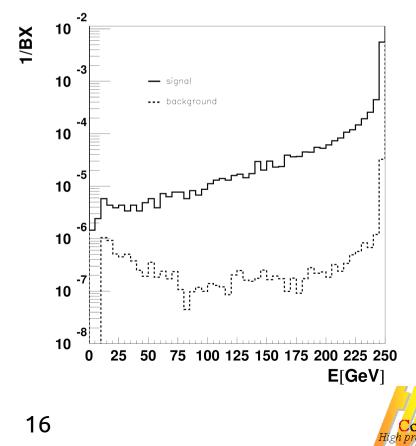
- For the integral luminosity in the upper 20% of energy, the Bhabha cross section should be calculated as follows:
 - Initial CM energy sampled from the normalized ISR-deconvoluted spectrum
 - Bhabha scattering angle within the limiting angles (θ_{\min} , θ_{\max}) of the FV
 - Lab-frame final angles unbounded
 - Final CM energy > $0.8E_0$
- Accuracy unknown, but there is no apparent reason why it should be worse than 10⁻³

EMD counting loss

- Deflection of final electrons in the EM field of the opposing bunch *after leaving the bunch profile*
- Counting bias -2.4x10⁻³ @500 GeV, -1.1x10⁻³ @1 TeV
- Correlates with the bunch charge and the σ_z size.
- Little to no sensitivity to the bunch *x*, *y* profile
- So far no beam-diagnostic quantity that would allow clean determination of the EMD without correlation to other beam parameters
- MC correction with undetected beam-parameter variations

 \rightarrow uncertainty 0.5x10⁻³ @500 GeV, 0.2x10⁻³ @1 TeV

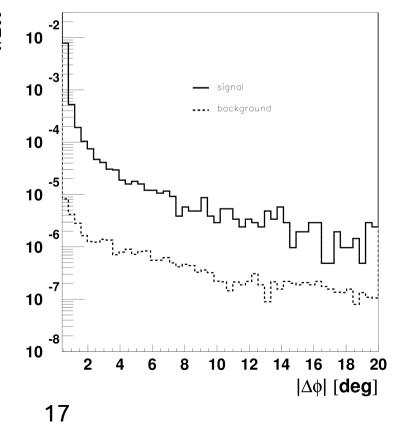




Physics background

- Four-fermion processes $e^-e^+ \rightarrow e^-e^+ f \bar{f}$
- Final electrons at small angles with a large fraction of energy
- Simulation (generator level) BHLUMI V4.04 and WHIZARD V1.4
- Count relative to Bhabha: (in the entire spectrum)

6x10⁻³ @500GeV 2.2x10⁻³ @1TeV



Physics background

- Reduction of background by selection criteria
 - To be equally applicable to the experimental count and the cross-section calculation, selection cuts must be invariant w.r.t the longitudinal boost
- E_{CM} cut removes the low-energy background peak, and the acollinear events $\underbrace{\mathbb{A}}_{10}^{-2}$
- Acoplanarity cut $|\Delta \phi| < 5^{\circ}$
- Background fraction after selection (including hadronization): @500GeV: +2.2x10⁻³ @1TeV: +0.8x10⁻³
- Signal efficiency 94%

Further systematic uncertainties (from other studies)

- Bhabha cross-section unc. **??** (at LEP [1] 5.4x10⁻⁴)
- LumiCal polar angle resolution [2] 1.6x10⁻⁴
- Polar angle reconstruction bias [2] 1.6x10⁻⁴
- IP lateral position uncertainty [3] 1x10⁻⁴
- Energy resolution effect [2] 1x10⁻⁴
- Energy scale [2] 1x10⁻³
- Beam polarization [2] 1.9x10⁻⁴

A. Arbuzov et al., Phys. Lett. B 383 (1996) 238
 H. Abramowitz et al., JINST 5 (2010) P12002

3) A. Stahl, LC note LC-DET-2005-004, DESY, 2005 (I € P € X ○ ♥ P ♥ I # (X) 18

Summary of systematic uncertainties

Effect	ΔL/L (500 GeV)	ΔL/L (1 TeV)
Bhabha cross section	5.4×10 ⁻⁴	5.4x10 ⁻⁴
LumiCal $\sigma_{ heta}$	1.6x10 ⁻⁴	1.6x10 ⁻⁴
LumiCal $\Delta \theta$	1.6x10 ⁻⁴	1.6x10 ⁻⁴
IP lateral position	1×10 ⁻⁴	1×10 ⁻⁴
Energy resolution	1×10 ⁻⁴	1×10 ⁻⁴
Energy scale	1x10 ⁻³	1x10 ⁻³
Beam polarization	1.9x10 ⁻⁴	1.9×10 ⁻⁴
Beamstrahlung+ISR (sim-independent corr.)	-1.1x10 ⁻³	-0.7x10 ⁻³
Beamstrahlung+ISR (full correction)	+0.4x10 ⁻³	+0.7x10 ⁻³
EMD	0.5x10 ⁻³	0.2x10 ⁻³
Phys. background	2.2x10 ⁻³	0.8x10 ⁻³
Total	2.6x10 ⁻³	1.6x10 ⁻³
HEP & XOVP VII	+(* 19	Collabor High precision de

atio