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The ladder is formed by 24  
readout ASICs (CLICpix)



Power consumption of a Ladder
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➡ Analog and digital electronics have a very different power consumption.

For these reasons they will be powered separately. In that way the analog and 
digital powering schemes could be optimized independently, in order to achieve 
the requirements (next slide).  

➡ The analog electronics could be completely turned off after the acquisition.
While the digital electronics need to be powered during the whole period. 

This presentation shows results on the Analog power scheme. The digital is 
currently being studied.  

20/30ust
on

Digital

Analog

Bunch train

t

156ns

312⇥ 500ps

48[W ]

(N � 1) idle + 1 read out

2.4[W ]

T = 20[ms]

0.54[W ]

0[W ]

All ON

All ON

All OFF

➡ Analog voltage is 1.2V while the digital is expected to be 1V.



Restrictions
1) Low losses: < 50 mW/cm2 in the sensor area, as the heat-removal 
solution is based on air-cooling to reduce mass. (must be shared among 
analog and  digital electronics)

3) High magnetic Field:  4 to 5 [Tesla] restricting the use of ferromagnetic 
material. 

2) Material Budget:  < 0.2%X0 for a detection layer, leaving less than 0.1%X0 
for cooling and services. (must be shared among analog and  digital 
electronics)

4) Regulation: within 5% (60 mV) on the ASIC during the acquisition time, 
expected to be close to 20-30 µs (CLICPIX specifications).

extra challenge for analog electronics
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Small capacitors close to each ASIC at the FE: (10 μF)

✔ The current loop is very small.
✖  But there’s need of regulation, as the 
capacitor discharges when the load is active.

Low dropout (LDO) voltage regulators added per ASIC:

An estimation  of the current at the BE, using the whole period to charge the capacitor, is:

The best way is using a constant 
current source at the back-end.

Iin

✔ The cables from the back-end to the capacitors @ FE can be really light in terms of mass.

The capacitor still discharges..
How do we charge it back to its level 

to be ready for the next cycle?
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Principle and waveforms of the scheme 
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Two layers Aluminium Flex Cable
1mm wide, 20μm thick/layer

Power storage and regulation: 
input Si cap (3 x 3.3 μF) + LDO (out: 1.2V) + output Si cap (1μF)

3 x 3.3 μF 1μF

Dummy load: 
Mosfet + resistor

The CLICpix is being developed, so in order to test the scheme we need a dummy load.

This duplicates 12 times, 
representing the 12 ASICs, 

the power storage, 
regulation and cabling. 



Why silicon capacitors?
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Low mass and flat. They can have a thickness down to 80 μm. 

Why aluminium cables?
For the same resistance than a copper cable, aluminium cables have around 4 times lower 
material contribution. The aluminium flex cables were made at the CERN PCB shop.

Ceramic capacitor of small smd package (0402 or 0201) can have comparable material. 
Nevertheless, their capacitance change dramatically (more than 80% of their value for some 
conditions) with the voltage applied (Vbias), making them impractical for our application. 

IPDiA company can integrate all the necessary passive components into a single die

Which can be afterwards connected 
to the CLICpix chip using TSVs
(Through Silicon Vias).

This is just a preliminary idea, and 
might be explored in the following 
months.



Implementation @ Lab
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Implementation @ Lab
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Measurements for the same load value
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1.88 A per chipIBE is constant. Around 22 mA
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Regulation during ton  < 50 mV
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Material Budget Today
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Silicon capacitors (today 25 μF/cm2): 
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Material Budget Today Tomorrow
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Silicon capacitors (today 25 100 μF/cm2): 
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We are considering the possibility of 
integrating the LDO inside the ASIC. 

Allowing a further reduction



Conclusions 

•Good regulation (11 mV)

•Power losses/dissipation lower than 10mW/cm2(leaving more than 40mW/
cm2 to the digital part)

•Small current (20mA to 60mA) through the whole cable depending on the 
load consumption. => Low material cables

•No DCDC needed. (Everything is in the back-end)

•Today’s Material Budget 0.064 %Xo, which is expected to be less than 
0.028 %Xo. (after improvements of silicon capacitors technology).
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During this talk we presented a power-pulsing scheme to power the analog electronics 
of the future vertex read-out ASIC CLICpix.

The scheme counted with regulation and silicon capacitors in the front-end, which 
were charged up using a back-end current supply of less than 100 mA.

Some of the achieved results were:

Future work: To try a similar scheme for the digital electronics and to compare it 
with a scheme based on DC/DC converters. 



Thanks for your attention :)
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Change in the load consumption
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Backup: En/Dis voltage regulator
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Material Budget
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Silicon capacitors (today 25 μF/cm2): 
Part%Name Material X0%(mm) length%(mm) width(mm) thick%(mm) %%Number factor h%eq%(mm) %%X0

Flex cable dielectric Kapton 286 120 1 0.05 1 1.00 0.005 0.002
Flex cable layers Aluminium 88.9 120 1 0.020 2 1.00 0.004 0.004

Input LDO Capacitors Silicon 93.6 10 4 0.1 12 1.00 0.040 0.043
LDO regulator Silicon 93.6 3 3 0.1 12 1.00 0.009 0.010

Output LDO Cap SMD 1206 Silicon 93.6 3.2 1.6 0.1 12 1.00 0.005 0.005
0.0641

Silicon capacitors (few years 100 μF/cm^2):
Part%Name Material X0%(mm) length%(mm) width(mm) thick%(mm) %%Number factor h%eq%(mm) %%X0

Flex cable dielectric Kapton 286 120 1 0.05 1 1.00 0.005 0.002
Flex cable layers Aluminium 88.9 120 1 0.020 2 1.00 0.004 0.004

Input LDO Capacitors Silicon 93.6 10 4 0.1 12 1.00 0.040 0.011
LDO regulator Silicon 93.6 3 3 0.1 12 1.00 0.009 0.010

Output LDO Cap SMD 1206 Silicon 93.6 3.2 1.6 0.1 12 1.00 0.005 0.005
0.0320

Power losses
7 mW/cm2  leaving 43  mW/cm2 for the digital electronics.


