

Beyond SM Higgs Searches at CMS

ECFA Linear Collider Workshop (LC2013), DESY Hamburg, 2013

Roger Wolf For the CMS Collaboration

Bundesministerium für Bildung und Forschung

Bundesministerium für Bildung und Forschung

The New Particle at 126 GeV (H(126))

- High confidence that new particle is a Higgs boson.
- Measured properties very close to SM expectation:

- Questions:
 - Is it THE SM Higgs boson?
 - Can we find more than one Higgs boson?

Coupling Structure of H(126)

 Answers to first question: can be obtained from analysis of coupling structure of new paticle.

Answers to second question: by explicit searches.

Explicit BSM Higgs Boson Searches at CMS

- SUSY implies presence (at least) of two Higgs doublets, leading to five observable Higgs bosons:
 - 2 charged: H^{+/-}: CERN-PH-EP/2012-123 (arXiv:1205.5736), (2.3fb⁻¹ @ 7TeV).
 - 3 neutral : H, h (CP-even), A (CP-odd): CERN-PH-EP/2012-034 (arXiv:1202.4083) (4.6fb⁻¹ @ 7TeV), CMS-PAS-HIG-12-033 (2.7–4.8fb⁻¹ @ 7TeV), CMS-PAS-HIG-12-050, (17fb⁻¹ @ 7+8TeV).
- "More exotic" models (motivated by non-zero v masses) predict doubly charged Higgs bosons H^{++/--}, CERN-PH-EP/2012-169 (arXiv:1207.2666), (4.6fb⁻¹ @ 7TeV)

= will concentrate on the most recent and most significant result due to time constraints.

Neutral Higgs Bosons in Supersymmetry (SUSY)

- MSSM implies presence of three observable neutral Higgs bosons:
 - Masses and couplings fixed for given m_{A} and tan β (= ratio of VEV's of doublets).

 Enhancement of coupling to downtype fermions (like τ's and b's) for tanβ>1:

Reconstruction of τ 's with CMS

Decay Mode	BR
$\tau \rightarrow e \nu \nu$	17%
$\tau \rightarrow \mu \nu \nu$	18%
$\tau \rightarrow h\nu$	12%
$\tau \rightarrow hh^0 v$	37%
$\tau \rightarrow hhhv$	15%

Reco of hadronic decay modes:

- Isolation (based on energy deposits in rings of ∆R≤0.5).
- Discrimination against e's (based on shower shape info and E/p).
- Discrimination against μ 's.

Reconstruction of Di- τ System

 Determine invariant mass of di-τ system with maximum likelihood method.

- Estimate for di- τ system, to be true for given value of $m_{\tau\tau}$.
- Inputs: four-vector information of visible leptons, x- and y- component of E_⊥ on event by event basis.
- Free parameters: ϕ , θ^* , (m_{vv}) per τ -lepton (4-6 parameters).
- Full integration of kernel. Scan of m_{π} from m_{τ} up to 2TeV.
- 15-20% resolution of the reconstructed m_{π} mass.

8

Event Selection

- Search in four decay channels: e_{μ} , μ_{μ} , $\mu_{\tau_{h}}$, $e_{\tau_{h}}$.
- Two well reconstructed, isolated leptons of opposite sign:
- Topological event selection, based on $p_{_{\zeta}}$ (eµ, µµ) or $M_{_{T}}$ (µ $\tau_{_{h}}$, e $\tau_{_{h}}$).
- Two event categories:

Apply template fit to m_π with B and S+B model. Determine best fit value of signal strength and asymptotic CLs limit.

Reconstructed Di-τ Mass (B-Tag category)

10

Sensitivity

Split by channels:

Split by category:

• Main systematics:

 τ identification (6%), τ energy scale (3%), jet energy scale (2.5% - 5%).

Limit in m_{Δ}-tan β (H $\rightarrow \tau\tau$ vs. H \rightarrow bb)

Limits from $H \rightarrow \tau \tau$:

Limits from $H \rightarrow bb$:¹⁾

Limit in m_{Δ}-tan β (H $\rightarrow \tau\tau$ vs. H⁺)

Conclusions

- After discovery of Higgs boson at 126 GeV, main questions:
 - Is it THE SM Higgs boson?
 - Is there more than one Higgs boson?
- Second item would give clearest hint to BSM physics.
- Most important search: additional neutral Higgs bosons in decay channel into τ 's:
 - Leads to strongest limits on MSSM parameter space.
 - MSSM: example of more general 2HDM's.
- Analysis of full dataset 2011/2012 currently ongoing (plan for publication this year). Will also contain more model independent limits on σ ·BR and $\sigma(gg \rightarrow H)$ vs. $\sigma(gg \rightarrow Hbb)$.

Backup

Compact Muon Solenoid Detector (CMS)

• Muon system:

 \rightarrow 10% momentum resolution for 1 TeV muon (in muonsystem alone).

• HCAL (Brass,Szintillator, 10λ_i):

$$\frac{\sigma E}{E} = \frac{100 \%}{\sqrt{E[\text{ GeV}]}} \oplus 4.5 \%.$$

 \rightarrow 10% energy resolution for single 100 GeV pi^{+/-}.

• Tracker(Pixel/Strips):

 $\frac{\sigma p_T}{p_T} \simeq (15 \cdot p_T [\text{TeV}] \oplus 0.5)\%$

 \rightarrow 0.5% momentum resolution for 10 GeV track of a charged particle.

• ECAL (PbWO₄, 28X₀):

$$\frac{\sigma E}{E} = \frac{(2.8 \pm 0.3) \%}{\sqrt{E[\text{ GeV}]}} \oplus \frac{0.124 \text{ GeV}}{E} \oplus 0.3 \%.$$

→1% energy resolution for a 30 GeV electron/photon.

Particle-Flow Event Reconstruction

- Fully reconstruct all particles in detector volume making best use of all possible detector information (esp. tracker & ECAL).
- Special particles (i.e. isolated leptons) are identified and others clustered to jets.

Performance of τ Reconstruction

- Efficiency >60% (flat for p₁>30GeV). Fakerate 1–3%.
- Efficiency and momentum resolution (nearly) independent from pileup.
- Control efficiency to 7% from data (from tag&probe and from incl. Z cross section measurement).

• Control energy scale to 3% from data (reco. of τ-mass in 3-hadrons and hadron+strip, further constraint in combined fit used for Higgs analysis).

$H \rightarrow \tau \tau$ Event Selection (extended information)

- Search in four decay channels: e_{μ} , μ_{μ} , $\mu_{\tau_{h}}$, $e_{\tau_{h}}$.
 - Two well reconstructed, isolated leptons of opposite sign:

$$\frac{1}{2} = \frac{1}{2} \left[\begin{array}{c} \bullet e & p_{T} > 10(20) \text{ GeV}, |\eta| < 2.3 \\ \bullet \mu & p_{T} > 20(10) \text{ GeV}, |\eta| < 2.1 \end{array} \right]$$

- Topological event selection:
 - $p_{\zeta}^{cut} = (p_{\zeta} 1.85 \cdot p_{\zeta}^{vis}) > -25 \text{ GeV}$

• M₇<40 GeV

Definition of p^{cut} and Event Selection Efficiency

• Topological event selection ($e\mu$, $\mu\mu$): $p_{\zeta}^{cut} = (p_{\zeta}-0.85 \cdot p_{\zeta}^{vis}) > -25 \text{ GeV}$

Tends towards zero

Tends negative values

21

Reconstructed Di-T Mass (No B-Tag category - log)

Reconstructed Di- τ Mass (linear plots, $\mu\tau_{h}$ channel)

H→bb Search (2.7 - 4.8 fb⁻¹ @ 7TeV)

- Select events with $N(Jet) \ge 3$ ($|\eta| < 2.1$, varying cuts on p_{τ}) & $N(B-Tag) \ge 3$.
- B-Tag working point with f(Fake)≈0.1%, ε(B-Tag)≈55%.
- Check $M_{_{jj}}$ of 2 leading jets and variable $X_{_{123}}$ based on secondary vertex mass of the three tagged jets.

• Determine background from QCD events from N(B-Tag)=2, where non tagged jet is weighted according to hypothesis for Q, C, B.

$H \rightarrow bb$ (input distributions)

M₁₂ [GeV]

- All hadronic analysis (left).
- Analysis with one isolated μ (semi-leptonic, bottom), based on on M_{μ} only.
- Two methods to estimate background from QCD.

H→bb Limit (2.7 - 4.8 fb⁻¹ @ 7TeV)

Singly Charged Higgs Bosons (2.3 fb⁻¹ @ 7TeV)

- If $m_{H^{+/-}} < m_{top}$, $H^{+/-}$ can be produced via top quarks (t \rightarrow H^{+/-}b)
 - Under the assumption BR($H^+ \rightarrow \tau^+ \nu$)=1 limits can be derived on BR($t \rightarrow H^+ b$).
- Search in three decay channels:

• Consider single (tt \rightarrow W^{+/-}H^{-/+}bb) and double (tt \rightarrow H^{+/-}H^{-/+}bb) H^{+/-} production

- •Use typical selection for top quark pairs
- Isolated e/μ , jets, b-jets, MET
- Expect H^{+/-} signal as deviation from SM expectation for tt

Event Selection

•**e**µ:

eμ		stat.	syst.
Exp: Obs:	3866 3875	± 38 ±	406

$\mu \tau_{h}$			stat.		syst.
Exp:	306	±	11	±	32
Obs:	288				

eτ _h		stat.			syst.
Exp: Obs:	194 176	±	8	±	20

• $qq\tau_{h}$:

(qqτ _h			stat		syst	
E	xp:	119	±	5	±	12	

Event Selection

• **e**µ:

e μ	stat.	syst.
Exp: Obs:	3866 ± 38 ± 3875	406

- The major contribution to the event yield comes from $tt \rightarrow e\mu X$.
- The signal has a softer $p_{\tau}(e/\mu)$ spectrum wrt. prompt e/μ from tt decays due to the $\tau \rightarrow lvv$ decay.
- Therefore a larger contribution of signal would lead to a lower yield of reconstructed events.

Limits on BR(t \rightarrow H⁺b) & tan β -m_{H+} (2.3 fb⁻¹ @ 7TeV)

• Main systematics:

τ (miss-)id 6% (15%), jet energy scale (2.5%-5%), b-jet (miss-)tagging (10%) 30

Doubly Charged Higgs Bosons (4.6 fb⁻¹ @ 7TeV)

Minimal seasaw models of type II, introduced to explain non-zero
v masses are realized with a triplet scalar field which introduces a
doubly charged H^{++/--} state:

Event Selection (example plots from prel. results)

- Search for 3 or 4 isolated leptons in mass dependent like-sign(!) resonance mass windows (search in 2-channels)
- Allow for lepton flavour violation (i.e. combine all kinds of flavours, include τ leptons)
- Exotic signature basically free of SM backgrounds

Three Leptons:

 $\Sigma p_{\tau}(3l's) > m(\phi) + 80 GeV$

m(II) $[m_{lower}(flav), m(\phi)+10GeV]$


```
Four Leptons:
Σp<sub>T</sub>(4I's)>m(φ)+80GeV
m(II) [m<sub>lower</sub>(flav), m(φ)+10GeV]
```


Exclusion Limits (4.6 fb⁻¹ @ 7TeV)

• Absence of events allows to set limits:

Main uncertainties:

 τ identification (8%), signal cross section (10%), stat. limitations in sidebands for background determination (10-100%)