Light higgsino models and parameter determination

Krzysztof Rolbiecki IFT-CSIC, Madrid

in collaboration with: Mikael Berggren, Felix Brümmer, Jenny List, Gudrid Moortgat-Pick, Hale Sert and Tania Robens

> ECFA Linear Collider Workshop 2013 27–31 May 2013, DESY, Hamburg

SUSY @ LHC

- What does LHC tell us about $1^{st}/2^{nd}$ gen. squarks? \rightarrow quite heavy
- Gaugino and stop searches model dependent limits weaker

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 10 theoretical signal cross section uncertainty.

Light higgsinos from gauge-gravity mediation

Light higgsinos at colliders

$$\mathcal{L}_{\text{MSSM}} = \mu \, \tilde{H}_u \tilde{H}_d + \text{h.c.} + \left(m_{H_u}^2 + |\mu|^2 \right) \, |H_u|^2 + \left(m_{H_d}^2 + |\mu|^2 \right) \, |H_d|^2 + \dots$$

• Higgsino mass parameter μ is special: supersymmetric

A priori μ is unrelated to the scale of SUSY breaking

• μ cannot be too small (LEP chargino bound: $m_{\chi_1^{\pm}} \gtrsim 100$ GeV) • μ should not be too large:

$$m_Z^2 = -2 m_{H_u}^2 - 2|\mu|^2 + \mathcal{O}(\cot^2 \beta)$$

If $|m_{H_u}^2|, \, |\mu|^2 \gg m_Z^2 \Rightarrow$ large cancellation needed \Rightarrow Fine-tuning!

Two approaches:

- μ generated supersymmetrically, around EW scale by coincidence
- effective μ generated by SUSY breaking in calculable models: μ/B_{μ} problem $\Rightarrow \mu$ still special

Naturalness wants μ around 100 GeV:

$$m_Z^2 = -2 m_{H_u}^2 - 2|\mu|^2 + \mathcal{O}(\cot^2 \beta)$$

LHC bounds want squarks and gluinos above 1 TeV.

Motivates studying scenarios where higgsinos are light (EW scale) while everything else is heavy (multi-TeV) except maybe 3rd generation

light higgsinos = near-degenerate χ_1^0 , χ_1^{\pm} , χ_2^0 around 100–200 GeV

Light higgsinos from hybrid gauge-gravity mediation

Gravity med.: $\mu \sim m_{3/2}, \rightarrow$ Giudice/Masiero '88

 $m_{\rm soft} \sim m_{3/2}$

Light higgsinos from hybrid gauge-gravity mediation

Gravity med.: $\mu \sim m_{3/2}$, \rightarrow Giudice/Masiero '88

 $m_{
m soft} \sim m_{3/2}$

$$\begin{array}{l} \mbox{Gauge med.: } \mu = 0, \\ m_{\rm soft} \sim m_{3/2} \cdot N_{\rm mess.} \cdot \frac{M_{\rm Planck}}{M_{\rm mess.}} \cdot \frac{g^2}{16\pi^2} \end{array} \qquad \qquad \begin{array}{c} \mbox{SUSY} \\ \mbox{hidden sector} \end{array} \\ \mbox{messenger fields with SM gauge charges} \end{array}$$

Light higgsinos from hybrid gauge-gravity mediation

Gravity med.: $\mu \sim m_{3/2}, \rightarrow$ Giudice/Masiero '88

 $m_{
m soft} \sim m_{3/2}$

$$\begin{array}{l} \textbf{Gauge med.: } \mu = 0, \\ m_{\text{soft}} \sim m_{3/2} \cdot N_{\text{mess.}} \cdot \frac{M_{\text{Planck}}}{M_{\text{mess.}}} \cdot \frac{g^2}{16\pi^2} \end{array} \qquad \overbrace{ \begin{array}{c} \textbf{SUSY} \\ \text{hidden sector} \\ \textbf{MsSM} \end{array} } \\ \textbf{mssenger fields with SM gauge charges} \end{array}$$

Models with GUT-scale extra dimensions:

typically include superheavy "exotic matter": candidate messengers

• masses:
$$M_{
m mess.}pprox M_{
m GUT}pprox M_{
m Planck}\cdot rac{g^2}{16\pi^2}$$

multiplicities: N_{mess.} ~ O(few tens)

Hybrid gauge-gravity mediation in higher-dim. GUTs:→ Brümmer,Buchmüller '11,'12

 $\mu \sim m_{3/2} \sim \mathcal{O}(100 \, \mathrm{GeV}), \qquad m_{\mathrm{soft}} \sim N_{\mathrm{mess.}} \cdot m_{3/2} \sim \mathcal{O}(\mathrm{TeV})$

A mass spectrum from hybrid gauge-gravity mediation

particle	mass [GeV]
h^0	124
χ_1^0	164
χ_1^{\pm}	166
χ^0_2	167
χ^0_3	2700
χ_4^0	4100
χ_2^{\pm}	4100
H_0	2200
A_0	2200
H^{\pm}	2200
$ ilde{g}$	4200
$ ilde{ au}_1$	1900
other sleptons	2500 - 3600
squarks	2700 - 5000

 $\tan\beta=44$

Quick recap: chargino and neutralino Sector

$$\mathcal{L}_{\tilde{\chi}} = \overline{\tilde{\chi}_{i}^{-}} (p \delta_{ij} - \omega_{L} (U^{*} X V^{\dagger})_{ij} - \omega_{R} (V X^{\dagger} U^{T})_{ij}) \tilde{\chi}_{j}^{-} + \frac{1}{2} \overline{\tilde{\chi}_{i}^{0}} (p \delta_{ij} - \omega_{L} (N^{*} Y N^{\dagger})_{ij} - \omega_{R} (N Y^{\dagger} N^{T})_{ij}) \tilde{\chi}_{j}^{0}$$

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$

diagonalised via
$$\mathbf{M}_{\tilde{\chi}^+} = U^* X V^{\dagger}$$

⁰where we define
$$\omega_{L/R} = rac{1}{2}(1\mp\gamma_5)$$

Quick recap: chargino and neutralino Sector

$$\mathcal{L}_{\tilde{\chi}} = \overline{\tilde{\chi}_{i}^{-}} (p \delta_{ij} - \omega_{L} (U^{*} X V^{\dagger})_{ij} - \omega_{R} (V X^{\dagger} U^{T})_{ij}) \tilde{\chi}_{j}^{-} + \frac{1}{2} \overline{\tilde{\chi}_{i}^{0}} (p \delta_{ij} - \omega_{L} (N^{*} Y N^{\dagger})_{ij} - \omega_{R} (N Y^{\dagger} N^{T})_{ij}) \tilde{\chi}_{j}^{0}$$

$$X = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{pmatrix}$$
 diagonalised via
$$\mathbf{M}_{\tilde{\chi}^+} = U^* X V^{\dagger}$$

$$\begin{pmatrix} Y = & & \\ M_1 & 0 & -M_Z c_\beta s_W & M_Z s_\beta s_W \\ 0 & M_2 & M_Z c_\beta c_W & -M_Z s_\beta c_W \\ -M_Z c_\beta s_W & M_Z c_\beta c_W & 0 & -\mu \\ M_Z s_\beta s_W & -M_Z s_\beta c_W & -\mu & 0 \end{pmatrix}$$

diagonalised via $\mathbf{M}_{\tilde{\chi}^0} = N^* Y N^\dagger$

 $M_1, M_2 \sim \mathcal{O}(\text{TeV}), \, \mu \sim \mathcal{O}(100 \text{ GeV})$

⁰where we define $\omega_{L/R} = rac{1}{2}(1\mp\gamma_5)$

$$\begin{split} \tilde{\chi}_1^0 &= \frac{1}{\sqrt{2}} \left(\tilde{h}_d^0 - \tilde{h}_u^0 \right) + \frac{\sin\beta + \cos\beta}{\sqrt{2}} \frac{m_Z}{M_1} \sin\theta_w \ \tilde{B} - \frac{\sin\beta + \cos\beta}{\sqrt{2}} \frac{m_Z}{M_2} \cos\theta_w \ \widetilde{W}^0 \\ \tilde{\chi}_2^0 &= \frac{1}{\sqrt{2}} \left(\tilde{h}_d^0 + \tilde{h}_u^0 \right) - \frac{\sin\beta - \cos\beta}{\sqrt{2}} \frac{m_Z}{M_1} \sin\theta_w \ \tilde{B} + \frac{\sin\beta - \cos\beta}{\sqrt{2}} \frac{m_Z}{M_2} \cos\theta_w \ \widetilde{W}^0 \\ \tilde{\chi}_1^+ &= \tilde{h}_u^+ - \sqrt{2} \sin\beta \frac{m_W}{M_2} \ \widetilde{W}^+ \end{split}$$

with masses given by

$$\begin{split} M_{\tilde{\chi}_{1,2}^0} &= |\mu| \mp \frac{m_Z^2}{2} \left(\cos\beta \pm \operatorname{sign}(\mu) \sin\beta \right)^2 \left(\frac{\sin^2 \theta_w}{M_1} + \frac{\cos^2 \theta_w}{M_2} \right) \\ M_{\tilde{\chi}_1^\pm} &= |\mu| - \sin 2\beta \operatorname{sign}(\mu) \ \cos^2 \theta_w \ \frac{m_Z^2}{M_2} \end{split}$$

and the mass difference between chargino $\tilde{\chi}_1^\pm$ and the LSP

$$M_{\tilde{\chi}_1^{\pm}} - M_{\tilde{\chi}_1^0} = m_Z^2 \left[\frac{\sin 2\beta}{2} \left(\frac{\sin^2 \theta_w}{M_1} - \frac{\cos^2 \theta_w}{M_2} \right) + \frac{1}{2} \left(\frac{\sin^2 \theta_w}{M_1} + \frac{\cos^2 \theta_w}{M_2} \right) + \mathcal{O} \left(\frac{\mu}{M_i^2} \right) \right]$$

Higgsinos + monojets

- Monojet (and -photon) signal at ATLAS and CMS
- Usual interpretation of j+MET: generic WIMP with contact interaction

Should also provide mass limits for higgsinos!

Linear collider

Detailed parameter measurements require linear collider

ightarrow Baer/Barger/Huang '11; Berggren/Brümmer/List/Moortgat-Pick/Rolbiecki/Sert, in preparation

Two benchmark scenarios with hybrid gauge-gravity mediation:

m_{h^0}	124	m_{h^0}	127
$m_{\chi_1^0}$	164.2	$m_{\chi_1^0}$	166.6
$m_{\chi_1^{\pm}}$	165.8	$m_{\chi^{\pm}}^{\chi_1}$	167.4
$m_{\chi^0_2}$	166.9	$m_{\chi_{2}^{0}}^{\chi_{1}^{0}}$	167.6
M_1	1700	M_1	5300
M_2	4400	M_2	9500
μ	166	μ	166

- production of $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ and $\tilde{\chi}_2^0 \tilde{\chi}_1^0$ already at $\sqrt{s} = 350 \text{ GeV}$
- small mass splittings \Rightarrow pions, soft γ s

Production at the ILC

- only $\tilde{\chi}_1^0 \tilde{\chi}_2^0$ produced: Z couplings forbid $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ and $\tilde{\chi}_2^0 \tilde{\chi}_2^0$ for higgsinos
- the *t* and *u* slepton exchange proportional to Yukawa coupling ⇒ negligible for higgsinos
 - \Rightarrow heavy sleptons in our scenarios but even for light ones they would not contribute

- neutralino decays via off-shell Z boson or two-body $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \gamma$
- for low mass difference the latter loop induced dominates
- chragino decays with off-shell W boson $\tilde{\chi}_1^{\pm} \rightarrow \tilde{\chi}_1^0 W^* \rightarrow \tilde{\chi}_1^0 f f'$
- lifetime up to $\sim 10^{-12} \text{ s} \Rightarrow$ decay length $c\tau \sim 10^{-3} \text{ m}$
- in scenarios with small mass difference one can look for displaced vertices
- two approaches to calculate decay modes:
 - calculate parton level matrix element (e.g. with Whizard) and hadronize with Pythia
 - use hadronic currents like for τ decays, implemented in Herwig++
 - give very different results...

Pythia hadronization vs Herwig++ hadronic currents $m_b = 124 \text{ GeV}: \Delta m = 1.6 \text{ GeV}$

$m_h = 127 \text{ GeV}; \Delta m = 0.7 \text{ GeV}$			
decay	Pythia	Herwig++	
$\tilde{\chi}_1^0 \ell \nu$	39%	29%	
$\tilde{\chi}_1^0 \pi^+$	11%	60%	
$\tilde{\chi}_1^0 \pi^+ \pi^0$	23%	7%	
$\tilde{\chi}_1^0 K^+$	0%	3.5%	

16		
decay	Pythia	Herwig++
$ ilde{\chi}_1^0\ell u$	40%	33%
$\tilde{\chi}_1^0 \pi^+$	10%	17%
$ ilde{\chi}^0_1\pi^+\pi^0$	20%	29%
$\tilde{\chi}_1^0 \pi^+ \pi^0 \pi^0$	6%	8%
$\tilde{\chi}_1^0 \pi^+ \pi^+ \pi^-$	6%	7%
$\tilde{\chi}_{1}^{0}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	11%	2.5%

- Pythia also predicts decay modes not present in Herwig++ that should otherwise be highly suppressed
- to be fair, Herwig++ hadronization is not doing much better here...

Chargino decay modes from Herwig++

Grellscheid, Richardson arXiv:0710.1951

 \Rightarrow note that radiative corrections to the mass difference (typically ~ 200 MeV) will have a profound effect on branching ratios if the tree level difference $\lesssim 1~{\rm GeV}$

Neutralino decays

Decay mode		
$\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 + \dots$	$m_h = 124 \text{ GeV}$	$m_h = 127 \; {\rm GeV}$
γ	23.6%	74.0%
$ u \overline{ u}$	21.9%	9.7%
e^+e^-	3.7%	1.6%
$\mu^+\mu^-$	3.7%	1.5%
hadrons	44.9%	12.7%
$\chi_1^{\pm} + X$	1.9%	0.4%

- radiative decay to $\tilde{\chi}_1^0 \gamma$ dominates for small mass differences
- cleanest experimentally
- for $m_h = 124 \text{ GeV}$ scenario hadronic decay modes become important giving low mass jets

Measurements at the ILC

- chargino/neutralino masses from recoil against ISR
 ⇒ accuracy 1.5–3.5 GeV
- \Rightarrow more details in Hale's talk

- four fitted parameters: $\Rightarrow M_1, M_2, \mu \text{ and } \tan \beta$
- perform a χ^2 fit

$$\chi^2 = \sum_i \left| \frac{\mathcal{O}_i^{\exp} - \bar{\mathcal{O}}_i^{\text{th}}}{\delta \mathcal{O}_i^{\exp}} \right|^2$$

- $\tan\beta$ remains unconstrained, will be varied in [1, 60] range
- mu constrained by cross sections and absolute masses: \Rightarrow in $m_h = 124$ GeV scenario $\mu = 167^{+2.1}_{-1.5}$ GeV \Rightarrow in $m_h = 127$ GeV scenario $\mu = 166 \pm 1$ GeV
- mass difference between chargino and LSP strongly constraints M_1 and M_2

χ^2 contours $m_h = 124 \text{ GeV}$ scenario

χ^2 contours $m_h = 127 \text{ GeV}$ scenario

- Light higgsinos = near-degenerate $\tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$ around 100 200 GeV
- Motivated from naturalness
- Motivated from model-building
 E.g. hybrid gauge-gravity mediation: μ gravity-mediated, soft masses gauge-mediated
- Higgsinos hard to see: mass degeneracy \Rightarrow soft decay products
- Difficult to see at LHC if everything else heavy
- Good case for linear collider
- With precise measurements multi-TeV parameters could be resolved
- Experimental analysis ongoing ⇒ Hale's talk

Cosmology

Gravitino LSP is natural dark matter candidate

Gravitinos produced thermally during reheating at large T_R :

$$\Omega_{\psi_{3/2}}h^2 \approx 0.21 \left(\frac{T_R}{10^{10}\,\mathrm{GeV}}\right) \left(\frac{100\,\mathrm{GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}}{1\,\mathrm{TeV}}\right)^2$$

 $\textbf{See e.g.} \rightarrow \textbf{Bolz, Brandenburg, Buchmüller '00}$

 $T_R \approx 10^{10} \text{ GeV}$:

- Nicely compatible with leptogenesis
- Right order of magnitude for DM abundance

Higgsino LSP

Cosmology

Problem: χ_1^0 NLSP long-lived, decays after BBN Energetic decay products destroy nuclei, distorting light element abundances

Bounds from \rightarrow Jedamzik '06: NLSP relic density vs. lifetime (assuming large hadronic BR)

⁴He, ²H, ³He, (Li)

• Higgsino NLSP relic density low: coannihilation with χ_1^{\pm} (recall first spectrum, $m_{\chi_1^0} = 137$ GeV, $m_{\chi_1^{\pm}} = 140$ GeV):

$$\Omega_{\chi_1^0} h^2 = 3 \cdot 10^{-3}$$

- ... but still in conflict with BBN bounds
- (Small) R-parity violation? Additional entropy production?