

SiW ECAL Technological Prototype Test beam results

Roman Pöschl, Thibault Frisson (LAL, Orsay) ECAL Meeting 17/12/12 University of Tokyo

Advanced European Infrastructures for Detectors at Accelerators

Physics Prototype

Proof of principle

2003 - 2011

Technological Prototype

Engineering challenges

LC detector

Number of channels : 9720 Weight : ~ 200 Kg

Number of channels : 45360 Weight : ~ 700 Kg ECAL : Channels : ~100 10⁶ Total Weight : ~130 t

Physics prototype

Carbon-fibre mechanical structure

30 layers of tungsten: 24 X₀, 1 $\lambda_{\rm r}$

S/N ~ 8

$$q_{E} / E = 16.5 / \sqrt{E(GeV)} + 1.1 \%$$

10k channels

2006-2011: DESY, CERN, FNAL, e-, π , μ , p (1 \rightarrow 180 GeV)

PCB SCSI connector Shielding Tailpiece (Cfi / W) structure type H Silicon wafer

6x6 PIN Diode Matrix – 1 x 1 cm²

2.5 mm

Thickness: 525µm

Dec. 17 2012

Technological solutions for the final detector

Construction start: 2010

Test beam: 2012

- Realistic dimensions
- Integrated front end electronic
- Small power consumption (Power pulsed electronics)

Slab assembly I

- Wafer glued onto PCB (FEV8_CIP)
- ASU is embedded into U structure

Slab assembly II

- Interconnection of ASU with adapter card
- ASU assembly in U structure
- Gluing of HV kapton
- All was realised with still relatively simple Tools sufficient for small production
- NB: Procedure needs to be scrutinised for larger production

Dec. 17 2012

The road to the technological prototype

Intermediate step:

- ➡ First test in beam
 - Benchmark to go further
 - U structure (single detection layer per slab)
 - Si wafer:
 - $9x9 \text{ cm}^2$ Thickness = 320 μ m

pixel size: 5x5 mm² :lateral granularity = 4 x better than physics prototype

- SKIROC2 ASICs
- 4 ASICs per slab (1/4 final design)

Slow Sh. G1 Trigger threshold _____ out tdc out_ssh_G1 out_ssh_G10 Slow Sh. G10 Preamplifier Slow shaper signal (adjustable gain) ast shaper signal Internal trigger (self-triggering capability) FLAG TDC 10-bit DA0 10-bit DA0 (from Digital ASIC

Dec. 17 2012

First test beam with the technological prototype

DESY – April and July 2012 e- (1 - 5 GeV)

• 6 layers (FEV8)

- Internal trigger

Total = 1536 channels PreAmplifiers of noisy channels are switched off total active channels = 1278

• PVC structure

- position for tungsten plates (2.1 mm)

Goals:

- Determine signal over noise ratio of the detector
- Operate first layers of the technological prototype
- Establishment of calibration procedure for a large number of cells
- Homogeneity of response (x,y scan of detector)

Event filtering

Ricochet / BCID+1 effect (without hit)

- Seen with SKIROC2 test bench and in TB
- Understood, studied by Romain with test bench (cf Stéphane's talk, Monday)
- Cut in TB analysis (cut event if delta BCID == 1)

• BCID +1 +2, +3.... (with hits)

- With SKIROC2 test bench: seen for high injected charges (> 50 MIPs)
- In TB: seen with low injected charges (<10 MIPs), seems to be related to plane events
- Cut in TB analysis (see planes events)

Plane events

- Not seen with SKIROC2 test bench \rightarrow PCB effect?
- Seems to be correlated with an unstable acquisition (bad pedestal in whole acquisition, BCID +1 +2 +3....)
- Cut in TB analysis:
 - MIP data: Number of hits > 10 in one chip AND delta BCID <= 5
 - Showers: Number of hits > 40 in one chip AND delta BCID <= 5 (this cut has not been optimized)

Isolated hits

- Reconstruction needed to see this effect (not yet well studied: noise, cosmic, related to plane events?)
- Cut in TB analysis:
 - No cut in layer independent analysis (energy calibration, S/N measurement, pedestal studies....)
 - Cut if we need event reconstruction (MIP detection efficiencies, showers...):

Dec. 17 2012 we ask at least 3 planes with hits in the same event (after reconstruction) Ecal Meeting - Tokyo Dec. 2012

Calibration of ASICs

Establishment of calibration procedure for a larger number of cells

S-Curves for all the channels

Dec. 17 2012

Beam spot

10 12 14

4 6 8 Hits

Hits_XY

16 18

34329

7.422

8.889

3.348

3.974

900

800

700

600

500

400

300

200

100

Entries

Mean x

Mean y

RMS x

RMS y

Dec. 17 2012

Detection efficiency

Data: 3GeV – No W – XY scan Total number of events: 2,3.10⁶ Track selection:

> At least 3 layers with hits Linear fit of the e- track Nhits<10

Inefficiencies due to:

Switched off channels Too high trigger thresholds (80%-95% of the MIP) Should be improved with the next test beam (December)

Dec. 17 2012

Energy measurement

Gain : 1.2pF - SigmaDet = 4.90 - Signal over Noise ratio = 14

Dec. 17 2012

Energy calibration

Establishment of calibration procedure for a larger number of cells Homogeneity of response (x,y scan of detector)

Dec. 17 2012

Signal over noise ratio

R&D target is 10:1

S/N > 10

(for all gains available with SKIROC2)

Event display

2 e- (3 GeV, no tungsten)

1 cosmic + 1 e- (3 GeV, no tungsten)

1 e- (5 GeV) 5 W plates between layers

What's next

- Beam tests in 2012 were extremely useful for 'team formation' and to obtain experience with new hardware
- Need to understand shortcomings of e.g. SKIROC2 to go to SKIROC3
 - SKIROC3 not before beginning of 2014
- Scrutinising of slab production
 - some wafers got broken during production
 - Revision of tools
 - Make use of small production to establish procedure/specs for mass production (where possible)
- Address power pulsing
 - Hardware understood well enough to address this important step (need for proof was highlighted many times during PAC meeting)
 - Have already beam test slots at DESY \rightarrow DESY Planning 2013

	Week	ТВЗ	21		TB22		TB24/1		TB24
		DA	TURA	none	Telescope	CAL	Telescope	PCMAG	none
		(tel	lescope)		2		PCMAG		
	2								
14-Jan	3			ITER	Tele setup				
	4	XO				CALICE AHCAL			
	5	CM	IS Pix-irrad			CALICE AHCAL	<u></u>	TPC MMG	ECAL
2-Feb	6	CM	1S Pix-fwd		ATLASPix			TPC MMG	
	7	CLI	ІСріх			SiPM	LorAngle		
_	8			SiW ECAL		SiPM	LorAngle		
	9			Sc ECAL	EUTelescope			DESY TPC	
4-Mar	10		_						
	11	ALI	ICE ITS		MuPix 2			DESY TPC	
	12	CM	1S Pix-irrad		APIX PPS			DESY TPC	
	13	CM	IS Pix-KA		APIX PPS			LCTPC Time	
1-Apr	14			GRPC-SDHCAL	APIX IBL			LCTPC Time	
	15			GRPC-SDHCAL	APIX DBM				
	16	XO			ILCPOL				
	17			SiW ECAL	ILCPOL		SBS GEM		
	18			SC ECAL		RD50	SBS GEM		
6-May	19	DEI	PFET			RD50	LorAngle		Į
	20	FE-	-14			CAL MMG		GridPix	
	21	CM	IS Pix-ro			CAL MMG			Belle 2 PID
	22	XO				CALICE AHCAL			l
3-Jun	23	CLI	ICpix			CALICE AHCAL			
	24	CLI	ICpix		MuPix 3	CALICE AHCAL			
	25	ALI	ICE ITS		APIX 3D				PICSEL
	26	CM	1S Trk II		DIA-SiGe				PICSEL

DESY Testbeam Schedule 2013 - version of December 14 2012

First period looks ok, 2nd period too short after first one (to my taste) Arrangements with other CALICE groups possible

Dec. 17 2012

Elements to be tested in 2013

Short slab prepared for power pulsing i.e. no decoupling capacitances Preparations ongoing

w/o picture

Behaviour of long slabs in magnetic fields Setup ready to measure currents across Interconnections Magnet of 2 T available at DESY (outside beam area)

Later 2013 Tests with 4 wafers for ASU and Test of long slab

FEV_COB – Engineering highlight

Dec. 17 2012

Successful beam test

Excellent stability of the DAQ Stable operation of the wafers and the electronic

Establishment of calibration procedure for a larger number of cells Homogeneity of response studies

- Energy calibration
- Detection efficiency

Determination of the signal over noise ratio: S/N > 10

Hardware effects revealed.

Data and detector about to be understood.

Thanks

Special thanks to our experts: Frédéric, Mickael, Patrick, Rémi and Stéphane

And to everyone who took part in the preparation of the test beam:

- LLR, LAL+OMEGA, LPNHE
- Kyushu University, Tokyo University, Nippon Dental University
- SKKU

SiW ECAL for a future LC

SiW ECAL is one of the prototypes for future LC detectors

The SiW ECAL in the ILD Detector

Basic Requirements:

- Extreme high granularity
- Compact and hermetic

Basic Choices:

- Tungsten as absorber material
 - X_0 =3.5mm, R_M =9mm, λ_1 =96mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design
 - Allows for pixelisation
 - Large signal/noise ratio

Signal sur noise – 'bonne' voie

Signal sur noise – 'moins bonne' voie

