

PIN diodes matrices Si-W ECAL

Activities at LLR

R. Cornat

Head of electronics & instrumentation team @LLR
Technical manager Si-W project @CALICE
Project coordinator @CALIIMAX (French funding agency)

Activities at LLR

- Relations with subcontracters
- Electrical measurments
- Crosstalk measurments
- Design & (some) simulation

2 issues

Peripheral dead zone: -20% of detection efficiency due to GR and mechanical structure

Can be compensated (off line)

« square » events : crosstalk between guard rings and peripheral pixels

Should be reduced by a factor 50 to 100

Technological prototype

- Larger matrices: lower edge effects on reconstruction
- Smaller pixels : improve « imaging » (counting)
- Thiner detector : keep Cpix~constant (same electronics)
- Critical issue about COST
 - Enlarge potential manufacturers
 - Understand origin of cost (yield, maskset, commercial margin, raw material, processing, ...)

Cost

- Basic ideas :
 - SORT wafers: keep as most as possible, equip non critical part of the detector with partly bad matrices
 - OPTIMIZE production yield
 - Smaller matrices (decrease sensibility to local defects)
 - Larger batches
- But : need to solve edge issue
- Crosstalk is secondary (may be suppressed with digital data filtering)

Batches

- Hamamatsu (9x9 cm2)
 - 2008: 18x18 pixels, 1.2 mm edge (used on ecal slabs)
 - 2009 : 16x16 pixels, 750 um edge
 - 2011: 16x16 pixels, 1mm 200 um edges: laser dicing
 - 2012 : idem + baby wafers

Standard
Segmented GR 2 or 4 rings
No GR

Measurements at LLR (1)

• I(V)

& I(t, V, T, H) => long term

- Global
 - « box » with contact to each pixel
 - sourcemeter
- At pixel level (in preparation)
 - Adding a switch crate (256 switches, have 104 for the moment)
- Useful for breakdown (> x3 bias voltage)
- Check compatibility with ReadOutChip
 - Current = offset for the preaplifier = decrease of dynamic
- Climatic chamber (T,H)

Measurements at LLR (2)

- C(V)
 - Global
 - « box »
 - Sourcemeter + RLC network analyser
 - Quality check
 - Full depletion voltage
 - Implant (with 1/C^2)

Measurements at LLR (3)

- crosstalk
 - Verification of manufacturer's design
 - R&D (segmented guardring)
 - Measurments with sensibility of -100 dB

R&D

- Segmented GuardRings
 - « cut » GR into small pieces to avoid signal propagation
 - What about GR quality (leakage) ?
 - 2007-2008 (OnSemi)
 - 2012 (HPK)
- Edgeless sensors
 - VTT edgeless technology
 - Single diodes 0.25 cm2
 - Minimatrices: 3x3 pixels, 1 cm2
 - -2011
 - First batch received in September

Measurement results HPK'12

- Delay due to other tasks
- I(V) & C(V) as usual (no surprise)
- Baby wafers :
 - even with no GR, Vbreak ~350 V!
 - Segemented GR : ok.

 ON GOING I(t, V, T, H), t up to several weeks, months

No GR!

I(V) Slope slightly increased
 May consider edge effect
 Should check individual pixels

 Expect lower yield as breakdown appears at lower Vbias

Next steps

Individual pixel characteristics
Cross talk

Follow cost issues (search for more potential manufacturers)

R&D: urgent to organize Test Beam to test square events (require few 100s MIPs) and/or use of an IR laser (bought @LLR, test room being equipped)

Tools to share results?

Discussion

• 6 inches wafers:

Ok with 4 smaller sensors

Expect better yield

Compliant with 4 inches wafers : wider selection of manufacturers

Need to confirm impact of dead zone

Note: Optimum use of overall surface with $(4.9 \text{ cm})^2 => ^20 \text{ cm}$ large slab and 0.61 large pixels