# Plan for Laser System @ Kyushu

ECAL Meeting in Tokyo 2012/12/18

Yuji Sudo (Kyushu University)

### Motivation

#### Microscope + Laser

- → make small radius laser light ~10µm
- → We can inject laser light anywhere in one pixel
- → Cross talk measurement, Edge effect

#### High power Laser

→ We can control number of e-h pair production by adjusting the yield of laser light





# Signal Production by Infrared Laser

Wave length **1064 nm = 1.16 eV** 

Energy gap of Si = 1.12 eV

Average production energy of e-h pair = 3.6 eV



Almost all laser light go through a Si sensor, but they can make e-h pair a certain probability.

→ We can make e-h pair uniformly in a sensitive area.

## Spec. of The Laser



**CRYLAS GmbH** 

DSS1064-Q2 (Class 3B)

Wave length : 1064 nm

Pulse width :  $\sim 1.5 \text{ ns}$ 

Pulse energy :  $> 20 \mu J/pulse$ 

~ 10<sup>14</sup> photons/pulse

Peak power : > 13kW

Reputation rate: 1 ~ 10kHz

87.3 x 35.4 x 33 mm



### **How to Control**

- We can easily control the laser reputation rate with Windows software.
- There is a triggering system as an option of the laser.
- A trigger signal is negative 800 mV and 2ns width





#### Trigger signal



## Optical system 1: Microscope

Olympus: STM-6



CCD camera







Objective lens x5, x20 and x100

## Optical System 2 : Light Guide



### We have to

- make a new Si sensor box optimized for the laser system
- make a signal read out system
- prepare daq system