

W-HCAL+TCMT Analysis Status Report

Eva Sicking on behalf of the CERN W-AHCAL Group

CALICE Electronics, DAQ and AHCAL Meeting DESY

11-12-2012

TCMT Analysis

Content

- Data sets and event selection
- Determination of energy resolution $\sigma_{\rm F}/<E>$
- Determination of sampling fraction
 - Naive approach: one weight for each detector part
 - "Uncorrected" approach: only one weight combined with knowledge of the detector: e/π ratios, MIP/GeV factors
- Comparison of
 - Energy resolution
 - Sampling weights
 - Shower start cut dependence

W-AHCAL + TCMT

- W-HCAL+ TCMT setup used in the SPS H8 beam
- TCMT Purpose
 - Measure punch-through of highenergy particles
 - Increase overall energy resolution

- HCAL: 38 tungsten layers, each 1cm thick, corresponding to ~4λ₁
- TCMT₁: 8 Fe layers, each 2cm thick
- TCMT₂: 8 Fe layers, each 10cm thick
- Distance between layers 32mm leaving space for sensor layers
- TCMT read-out: scintillator strips and SiPM

Data Sets & Events Selection

- Reconstructed CERN 2011 test
 beam data of HCAL+TCMT
- Data at beam energies from
 10 GeV to 300 GeV for positive and negative particles
- Here: Analysis of pion event sample

- Pion events selection based on HCAL-selection cuts
 - Check if energy-sum is reasonable for pions
 - Muon & electron rejection
 - Empty event rejection, preshower rejection
 - Shower should start in one of the first 4 layers

Eva Sicking

Example: 100 GeV, negative pions

TCMT Analysis

Control histograms: E_{sum HCAL+TCMT}

CERN 2011 Pion (-)

CERN 2011 Pion (+)

Estimation of Energy Resolution

- Determine energy sum distribution
- Use only 80% of most central entries of the E_{sum} peak for a fit with a Gaussian function
- Extract mean <E> =<E_{80%}>

and width $\sigma_{\rm E}{=}\sigma_{\rm E80\%}$ of peak based on Gaussian fit function results

• Energy resolution: $\sigma_{\rm E}/<{\rm E}>=\sigma_{\rm E80\%}/<{\rm E}_{80\%}>$

Comparison of Energy Resolutions

- E_{sum,HCAL}
- $E_{sum,HCAL,TCMT} = 1 * E_{sum,HCAL} + 1 * E_{sum,TCMT1} + 1 * E_{sum,TCMT2}$
- Sampling: χ^2 minimization of difference in E_{input} and $E_{reco,corrected}$
 - E_{input} is chosen here to E_{beam} , use full 100% of the E_{sum} peak
 - "Naive/simple": simultaneous minimization of several weights

$$\mathsf{E}_{\mathsf{input}} = \mathbf{W}_{\mathsf{H}}^{*} \mathsf{E}_{\mathsf{HCAL}} + \mathbf{W}_{\mathsf{T1}}^{*} \mathsf{E}_{\mathsf{TCMT1}} + \mathbf{W}_{\mathsf{T2}}^{*} \mathsf{E}_{\mathsf{TCMT2}}$$

- "Uncorrected": use known properties of calorimeter and 1 scaling factor

$$\Xi_{input} = \mathbf{W}_{global} * (e/\pi)_{W} * (MIP/GeV)^{-1}_{W} * E_{HCAL} + \mathbf{W}_{global} * (e/\pi)_{Fe} * (MIP/GeV)^{-1}_{Fe} * E_{TCMT1} + \mathbf{W}_{global} * (e/\pi)_{Fe} * (MIP/GeV)^{-1}_{Fe} * 4 * E_{TCMT2}$$

- For current setup: $(e/\pi)_{W} = 1.0$, $(e/\pi)_{Fe} = 1.19$,

 $(MIP/GeV)_{W} = 27.0 MIP/GeV(MIP/GeV)_{Fe} = 42.3 MIP/GeV$

Comparison of Resolution: Example

Beam Energy Dependence

Energy Resolution versus Beam Energy

- Estimated for HCAL-only, HCAL+TCMT, HCAL+TCMT+simple-sampling, HCAL+TCMT+ uncorr-sampling
- Sampling: Weights are optimized for each energy separately
- For high energy runs, $\sigma_{\rm E}/{\rm E}$ decreases when using information of TCMT
- Increase of $\sigma_{\rm E}^{\rm}/{\rm E}$ at high E due to tail at low ${\rm E}_{\rm sum}^{\rm} \rightarrow$ peak appears to be broader
- Both sampling approaches give similar results
- Sampling further decreases σ_{E}/E

Shower Start Dependence

- $\sigma_{\rm F}/E$ increases when allowing the shower to start in all layers
 - \rightarrow Leakage effects at high energies are more pronounced
 - \rightarrow Larger leakage \rightarrow lager tails at low E_{sum}
 - \rightarrow Larger difference between two sampling approaches

Shower Start Dependence

- Introduction
- Energy scan

Shower-Start Dependence @ 100 GeV

CERN 2011 Pion at 100 GeV

- Increased resolution when using only first layers for shower start
- Impact on shower start cut is less obvious when using TCMT(+sampling)
- How do the sampling weights look like?
 - Note: Sampling has been done for each run separately.

To do: combine files per energy and perform the sampling on complete data sample

- Independent weights w_H,w_{T1},w_{T2}, do not have expected values from "uncorrected sampling" approach, e.g. w_{T2} should be 4 times w_{T1}
 - Simple method has many degrees of freedom. Favor "uncorrected sampling" approach with only one degree of freedom but slightly worse resolution
- Weights dependent only slightly on shower start

TCMT Analysis

Energy Scan (all energies in backup slides)

Shower-Start Dependence @ 10 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 60 GeV

- Here, the sampling starts to work, as enough hits reaches the TC
 - Sampling gives stable results
- Weights are almost independent of shower start cut

Shower-Start Dependence @ 250 GeV

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start
- Weights of "uncorrected sampling" approach is close to 1 but grows with energy

Summary

- Energy resolution of HCAL, HCAL+TCMT, HCAL+TCMT+simple-sampling, HCAL+TCMT+uncorr.-sampling
- Low energy runs
 - No difference in resolution when adding TCMT
 - Sampling does not work as too few hits are in the TCMT
 - Weights have large uncertainties
- High energy runs
 - Increased resolution when adding TCMT(+sampling)
 - Sampling works fine and gives stable results

- Shower start dependence of energy resolution
 - Strongest in HCAL-only data
 - Only slight dependence in HCAL+TCMT(+sampling)
- Shower start dependence of sampling weights
 - Weights seems to depend only slightly on shower start
- Weights of "uncorrected" sampling increase slightly with energy

Outlook

- Comparison of data and simulations
- Study E_{Input} dependence of weights and energy resolution
- Study linearity of response
- Choose one energy for the determination of the sampling weights and use these for all data
 - Data or MC
- Study impact of noise

Shower-Start Dependence @ 10 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 20 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 30 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 40 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 50 GeV

- Results of HCAL and HCAL+TCMT are almost the same
- Sampling does not working properly as there are almost no hits in the TC
 - Large uncertainties of weights

Shower-Start Dependence @ 60 GeV

- Here, the sampling starts to work, as enough hits reaches the TC
- Weights are almost independent on shower start

Shower-Start Dependence @ 80 GeV

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

Shower-Start Dependence @ 180 GeV

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

Shower-Start Dependence @ 200 GeV

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

Shower-Start Dependence @ 250 GeV

- Sampling works, gives good resolution also at higher shower start values
- Weights are almost independent on shower start

Shower-Start Dependence @ 300 GeV

Sampling works, gives good resolution also at higher shower start values

Eva Sicking 35

• Weights are almost independent on shower start

Shower Start

