

Status of the Tungsten-Iron Comparison

Clemens Günter

CALICE AHCAL meeting, 11.12.2012

Motivation

Motivation:

 Investigate and understand the differences between iron and tungsten absorber (tungsten absorber proposed for CLIC)

• Compare pion showers for iron (FNAL 2008 & 2009) and tungsten (CERN 2010) data for energies from 2-10 GeV (overlap of both testbeams)

Linearity and comparison to simulation

- Mean energy deposit for tungsten well described by simulation
- Less agreement between data and simulation for iron
- Higher energy deposit in data points to remaining contamination of sample

• Deviation from linearity for all data points less than 3 %

Profile shape agreement

4 / 14

Shower decomposition

Shower decomposition plugin for Mokka developed together with M. Ramilli, S. Morozov and S. Lu

 Calculation of fractions of energy deposit for particles from certain physics processes implemented

Results for shower decomposition

Only two components of the shower show a major difference between iron and tungsten

- Predictions by simulation vary strongly between physics lists
- Visible em compnent smaller in tungsten (partially absorbed in nonactive material)
- Neutron component only slightly higher than in iron (also suppressed because of absorption in non-active layers)

Decomposition timing

DESY

- Hits from em component dominates first ns
- Neutron component dominates afterwards
- Tungsten has ~10 more neutron hits
- Crosschecked with results from M.Ramilli

Tuned beam profiles

• Position of particle gun for simulation changed to have better agreement of beam profile in data and simulation (ongoing for FNAL iron data)

Longitudinal profiles 8 GeV

- MIP calibration from CAN-036 solved some problems for tungsten (e.g. bad MIP calibration for noisy cells found found for standard calibration)
- Iron profiles still have less agreement (multi-particle contamination estimation ongoing)

Profile shape agreement

Decomposition vs beam momentum

- Em component bigger for iron absorber
- Neutron components bigger for tungsten absorber
- Other components very similar for both absorber configurations

The neutron component in detail I

The neutron component in detail II

- Energy deposit via neutron capture much higher in tungsten (but in total small compared
 - to other shower components)

 Energy deposit via elastic scattering on protons (scintillator) higher in tungsten

- Beam profiles have been tuned (ongoing for fnal)
- MIP calibration has been changed, which removed the "dips" in the longitudinal shower profile for layer 6 & 7 for tungsten
- Time distribution of hits in a shower has been shown as a crosscheck for the shower decomposition
- The neutron component of the shower has been studied in detail

<u>Plans:</u>

- Estimate systematic errors (esp. fnal multi-particle), ongoing
- Investigate impact of measured inter-tile crosstalk on radial profiles, ongoing

New MIP calibration cern

8 GeV tungsten data

Just mip calibration changed

No event selection

Event selection CERN

- Event selection from CAN-036 could not be taken over (because difficult to do comparable shower start selection for iron data)
- => Own event selection established for CERN testbeam data
 - Selection based on cherenkov detector information
 - Pre-shower event rejection
 - Muon rejection extended for energies 2 GeV
 - Additional cuts for data quality

 (rejection of bad event due to randomly fired led light, empty event rejection cut)
- => Quality comparable to CAN-036 pion event selection (similar linearity, longitudinal profiles and resolution)

Event selection FNAL

entries / \sum entries

• Event selection for FNAL testbeam could not be taken over

entries

=> no evidence for contamination with electron events at 4 GeV and above

- => instead multi-particle
 contamination was found
 (2 types)
- => no better data available

FNAL multi-particle rejection

- Rejection of events with additional muons developed (based on existing tracking algorithms)
 - => Inspection with event display shows almost no remaining events with additional muons leftover
- Rejection of event with more than one hadron developed (based on existing cluster algorithms, many other cuts tried)
 - => Contamination could not be fully removed, but estimation of remaining contamination ongoing <u>8 GeV pion:</u>
 - => Production of multi-particle Event sample ongoing

DESY