

T3B: Behind the Scenes

Frank Simon

Max-Planck-Institut für Physik

Munich, Germany

AHCAL Main Meeting, DESY Hamburg, December 2012

The T3B Setup

• 15 cells behind the WAHCAL / SDHCAL

- Directly coupled MPPC-50P
- Bicron BC420 scintillator (391 nm peak emission, pulse FWHM 1.3 ns, 0.5 ns rise time)
- Wrapped in 3M reflective foil

T3B Readout

 SiPM mounted to high band-width preamplifier (x8.9 amplification)

- Each channel read out with PicoScope PS6403
 - 1.25 GS/s
 - 2.4 μs acquisition window
 - max. trigger rate > 100 kHz

Data Reconstruction

- Full waveform recorded for each channel
- Individual photon arrival times (and total amplitude) determined by iteratively subtracting 1 p.e. signals

Calibration - Average 1 p.e. signal

- Dark noise recorded between spills
- Every few minutes a reference 1 p.e. signal for each channel is built from data
- Automatic gain correction!

 Reference waveform determined by fit, including smooth extrapolation to avoid artifacts from end of acquisition window

Calibration - Energy

- Calibration of the time energy scale in the lab with a 90Sr source
 - Additional correction factor to MIP scale: 0.82 (deposited 805 keV for MIPs compared to ~1 MeV for ⁹⁰Sr electrons

 MIP amplitude in p.e. depends strongly on integration time: Afterpulses of the photon sensor!

Calibration - Energy

- Temperature matters: Direct effect on the gain (since we keep the operating voltage constant)
- But beware: Afterpulses also change with temperature and voltage!
- **▶** Temperature correction is integration-time dependent!

For short integration times (< recovery time of MPPC micro-cells): Linear dependence of MIP on gain

For long integration times (>> recovery time of MPPC micro-cells): Quadratic dependence of MIP on gain

Calibration - Time

- T3B is not capable of measuring absolute time: No careful study of signal running times from trigger system to T3B
 - Triggers taken from CALICE DAQ backplane with WAHCAL, directly from scintillator coincidence with SDHCAL
- But: Took great care that all oscilloscopes trigger at the same time: uniform cable lengths to Picoscope external trigger, uniform cable lengths for T3B tiles (on the 1 - 2 cm (50 - 100 ps) level)
- ▶ To measure time relative to primary particle impact, a measurement of the latency of the whole system is required
 - ▶ Since channel-to-channel timing is fixed, this can be done with a single cell

Calibration - Time

- Fix the global timing: Penetrating particles in the central tile of T3B
 - Done on time of first hit distribution: The main peak corresponds to instantaneous (relativistic) particles - Peak determined with a Gaussian, set to t = 0 in analysis

Calibration - Time vs Energy

- The time of first hit is defined by the second detected photon of a pulse
 (> ~ 0.4 MIP in 9.6 ns): Photon statistics has an influence on reconstructed time
 (after all, 1 MIP ~ 20 p.e., in reality lower at CERN SPS TB due to high
 temperature compared to CERN PS TB)
- ▶ Results in an energy-dependent time slewing Needs to be corrected
 - done with muon runs, applied to all identified first hits in the analysis

Calibration - Time vs Energy

- The time of first hit is defined by the second detected photon of a pulse
 (> ~ 0.4 MIP in 9.6 ns): Photon statistics has an influence on reconstructed time
 (after all, 1 MIP ~ 20 p.e., in reality lower at CERN SPS TB due to high
 temperature compared to CERN PS TB)
- ▶ Results in an energy-dependent time slewing Needs to be corrected
 - done with muon runs, applied to all identified first hits in the analysis

Simulations

 Photon timing taken from muon data (instantaneous energy deposition)

What You get for it: Results! - One Example

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel

What You get for it: Results! - One Example

- Late energy deposits are more important in the outer regions of a shower
 - More pronounced effect in tungsten than in steel
 - In steel: Good description by all physics lists (on the level of a few 100 ps)
- In tungsten: Neutrons are of key importance only QGSP_BERT_HP and QBBC provide a good prediction

The Making Of: The Movie

- Correlate T3B and WAHCAL events:
 Event-wise shower start information
- Split data set (identified first hits) into
 3D histogram:
 - radial position: T3B cell id
 - longitudinal depth in shower:
 distance of shower start and T3B
 (the number of events in the shower
 start bins is used as normalization
 basis: gets longitudinal profile right!)
 - time: measured time of first hit,
 corrected for speed of light
 propagation from shower start to T3B

The Making Of: The Movie

60 GeV pion

Frank Simon (fsimon@mpp.mpg.de)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

T = 0: Activity maximum in layer 39 (rear of calorimeter)

