

Tile and SiPM studies at Hamburg University

Erika Garutti, Sebastian Laurien, Marco Ramilli

AHCAL Main Meeting - DESY, 11/12/2012

Incoming prototype

- One layer of AHCAL engineering prototype in test beam in November 2012
- Commissioning of additional layers during 2013 2014:
 - → 8 HBUs from DESY at Hamburg University
 - → equipped with Uni Hamburg tiles

UniHH tile design:

- Plastic scintillator tile
 - → cut from 3 mm thick sheet and machined
 - → SiPM dimple with MPI Munich design
- SMD Ketek SiPM
- Reflector foil 80 µm thick wrapping
- Tile glued to the PCB

<u>Possible improvements:</u>

- Tile homogeneity
- Tile uniformity
- SiPM+ tile performances (Light yield, tile light cross-talk, SiPM noise)

SiPM choice

Producer	Active Area [mm²]	Cell Pitch [µm]	N of pixels	Fill Factor [%]	PDE [%]	Peak sensitivity Wavelength [nm]	dV _{BD} /dt [mV/deg]
Ketek	1.2 x 1.2	25	2300	48	> 30	420	23 (?)
Hamamatsu	1 x 1	25	1600	30.8	25	440	56

- Ketek SiPM with SMD mounting
- •Performances similar to Hamamatsu MPPC S10362-11-25P
- •Ketek show a less strong temperature dependence and overvoltage dependence
- •Cross check through established characterization procedure

Hamamatsu sample – 50 µm cell pitch

Ketek smoother dependence from overvoltage allows a more fine operational voltage optimization

Tile - the scintillator

The plastic scintillator (BDB):

• Peak emission: 400 - 450 nm

Peak absorption: 350 nm

tiles will be cut and machined not directly molded

Grant an accuracy in the dimensions of $\sim 20~\mu m$ Molded tile accuracy $\sim 100~\mu m$

No alignment pins foreseen

Tile - the coating

The tile coating:

- Improve light yield
- Get rid of tile light-cross talk

Very preliminary Light Yield results

SiPM	tile	borders	surface	LY (Pixel)	
Ketek	BC-400	3M	3M	33.7±0.4	
CPTA	ITEP	Acid polish	3M	15.04 ±0.4	
Hamamatsu	BC-400	3M	3M	28.8 ± 0.4	

Sr90 source

reflector foil wrapping

Proved to be best result out of several attempts (consistent with SciECAL results)

Two products under study:

- •Vikuiti ESR reflectance > 98%
- •Kimoto film reflectance ~ 95%

Performances to be verified with Light Yield setup

Monte Carlo simulations

Preparatory simulations for the test beam:

- One layer of calorimeter prototype behind 4λ of tungsten absorber
- Iron tail catcher 3 cm behind the layer

Outputs to be compared with test beam results: waiting for data analysis!

Future work on simulations

GEANT4 results comparison with data:

- GEANT4.9.6 released in these days
- New total cross-sections for proton, neutron and pion had been introduced
- Comparison between new release and previous and with data needed!
 - → Comparison between G4.9.6 and previous versions predictions
 - → Comparison with data
 - → Digitization implementation (including time digitization)

<u>Final goal: introduce time in PANDORA PFLOW</u>

- Can the algorithm be improved?
- Introducing time-stamping can improve shower separation?

Conclusions

- Hardware:
- New tile design finalization
 - → Ketek SiPM full characterization
 - → Reflector foil tests
 - → Tile+SiPM performances (Light Yield, linearity range, cross-talk)
- Software:
- November test-beam data/Monte Carlo comparison
- Evaluation of new GEANT4.9.6 release performances
- Studies of the implementation of time component in PANDORA

Backup Slides

