LHC physics prospect

Takashi Matsushita

Kobe University

ILC Tokusui Workshop 20 December 2012

Gotcha!

The longest endeavour in the Standard Model ended in July

The 48 year itch : from idea to observation

• Timelines showing the idea of a particle to its discovery

Chronicle towards the discovery at LHC

Conquest of known particles

Re-discovery of the Standard Model

- Starting from weak gauge boson production measurements
- measurement of top production
- measurement of di-boson productions

which paved the way for ...

2012-12-20 LHC physics prospect

Discovery of a new particle

p-value : probability of observing such a result if no signal was there

- Status of LHC experiments
- What is the next?
 - LHC upgrades
 - LHC physics prospects
- Summary

Standard Model Higgs - a reminder

Branching ratios at 125 GeV

Important decay modes at 125 GeV

$\sigma\times$ BR for each final state

Higgs-like particle

$H \rightarrow \gamma \gamma$ candidate

Higgs-like particle $H \rightarrow ZZ^* \rightarrow IIII$ candidate

Run Number: 189280, Event Number: 143576946 Date: 2011-09-14, 11:37:11 CET

EtCut>0.3 GeV PtCut>3.0 GeV Vertex Cuts: Z direction <1cm Rphi <1cm

Muon: blue Cells: Tiles. EMC

Higgs-like particle candidates of $H \rightarrow WW^* \rightarrow l\nu l\nu$, $H \rightarrow \tau_{lep} \tau_{lep}$, $WH \rightarrow (\mu\nu)bb$

• Candidate events for more challenging decay modes

$H \rightarrow WW^* \rightarrow e \nu \mu \nu$

$$H \to \tau_{\mathsf{lep}} \tau_{\mathsf{lep}}$$

2012-12-20

LHC physics prospect

 $WH \rightarrow \mu \nu bb$ Takashi Matsushita (Kobe University) 8/24

Is this particle the Standard Model Higgs?

compatibility of the $m_{\gamma\gamma}$ and m_{41} is estimated to be \sim 2.7 σ

$\frac{\mathsf{CMS}}{m_X = 125.8 \pm 0.4 \text{ (stat.)} \pm 0.4 \text{ (syst.) GeV}}$ $\hat{\mu} \simeq 1.25$

Is this particle the Standard Model Higgs?

- Overall signal strength consistent with the SM Higgs
- Performed spin-parity analysis. Preference of 0⁺ hypothesis.
- Need more data to reduce uncertainties

top and search with top

 top-pair cross section measurements at 7 and 8 TeV

- Good agreement with the predictions
- $m_{\rm top} = 173.2 \pm 0.5 \; ({
 m stat}) \pm 1.3 \; ({
 m syst}) \; {
 m GeV}$

• Search for SUSY with top • $\tilde{t} \rightarrow t \chi$

• Mass reach improved with 8 TeV data, up to \sim 580 GeV

New physics search

SUSY

non-SUSY

 Numerous searches have been performed but no direct evidence of new physics (yet)

What is the next?

"In the absence of any direct evidence of new physics, the Higgs will be one of the best source of information about possible new physics"

- Natural question is...
- Is this the Standard Model Higgs or a Higgs beyond the SM?
 - All couplings as expected?
 - All production modes as expected?
- But for what precision?
 - SUSY, composite Higgs, top partners etc. will give a few percent deviation from the Standard Model on Higgs couplings. Up to 5% in some models.

Large Hadron Collider: 2010-2012

successful years of initial physics runs

- The results shown so far used up to 12-13 fb⁻¹ of 2012 data
- Expects update with full dataset, which will shrink uncertainties a bit
- For more precise measurements, we will need large statistics

What LHC can do for us?

LHC timeline

• LHC start-up • 7-8 TeV, 8 \times 10 33 cm $^{-2}\text{s}^{-1},$ $\mathcal{L}\sim$ 30 fb $^{-1}$

• Go to design energy, nominal luminosity • 13-14 TeV, 1 \times 10 34 cm $^{-2}\text{s}^{-1}$, $\mathcal{L}\sim$ 100 fb $^{-1}$

• LHC phase-I upgrade to full design luminosity • 14 TeV, 2 \times 10 34 cm $^{-2}s^{-1}$, $\mathcal{L}\sim$ 200 fb $^{-1}$

• HL-LHC phase-II upgrade • 14 TeV, $5 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, $\mathcal{L} \sim 3000 \text{ fb}^{-1}$ (luminosity levelled)

~3000 fb

Physics programmes

- With LHC 7-8 TeV data until 2012 (\sim 30 fb $^{-1}$)
 - First characterisation of Higgs-like boson
 - \sim 330 $\gamma\gamma$ candidates with 13 fb $^{-1}$ at 8 TeV
 - \sim 10 four-lepton candidates with 13 fb^{-1} at 8 TeV
- With LHC 13/14 TeV data until \sim 2022 (\sim 300 fb $^{-1}$)
 - Measure Higgs-like boson properties
 - Search for new physics at higher mass scale
- With LHC 14 TeV data until \sim 2032 (\sim 3000 fb $^{-1}$)
 - Measure Higgs-like couplings with ultimate precision
 - Study Vector boson scattering
 - Search for new physics in rare processes

Experimental challenges at the upgraded LHC

- Need detectors and trigger with high performance from low to high energy scales in severe pile-up environments
- \sim 50 collisions per beam crossing after the phase I upgrade
- \sim 125 collisions per beam crossing after the phase II upgrade
- Upgrade of detectors are also planned (but not covered) for performing physics studies with the upgraded LHC

25 reconstructed vertices

78 reconstructed vertices

Expected uncertainties on $\hat{\mu}$

- MC study with fast-simulation
 - truth with smearing: best estimate of physics objects dependency on pile-up
 - μ up to 140, validated with full-simulation up to $\mu \sim$ 70

• $\gamma\gamma$ and ZZ* profit most from the high luminosity, down to \sim 5% experimental uncertainty

ATLAS Preliminary (Simulation)

Expected uncertainties on Higgs couplings

- Cannot measure Higgs width $\Gamma_H \sim 4.2$ MeV @ 125 GeV, but ratios of couplings
- ATLAS expectations on $\kappa_{V(F)}$, where $\kappa^2_{V(F)} \sim \Gamma_{V(F)} \sim \sigma_{V(F)}$

	$300 { m ~fb^{-1}}$	3000 fb^{-1}
κ_V	3.0% (5.6%)	1.9% (4.5%)
κ_F	8.9% (10%)	3.6% (5.9%)

(with current theoretical uncertainties)

• Similar expectations from CMS

Summary of Higgs with 300 / 3000 fb⁻¹

300 fb⁻¹ at 14 TeV

- *m_H* at 100 MeV
- Disentangle Spin 0 vs Spin 2 and main CP component in ZZ*
- Relative precisions on couplings
 - Z, W, b, τ 10-15%
 - t, μ 2-3 σ observation 5-11%
 - $\gamma\gamma$, gg

3000 fb^{-1} at 14 TeV

- *m_H* at 50 MeV
- More precise studies of Higgs *CP* sector
- Relative precisions on couplings
 - Z, W, b, τ, t, μ 2-10%
 - 2-5% • $\gamma\gamma, gg$
 - $H \rightarrow HH > 3 \sigma$ observation with CMS/ATLAS combined

(assuming sizeable reduction of theoretical errors)

• LHC upgrades are crucial step towards precision tests of the nature of the newly discovered boson

Search for new physics at higher mass scale susy

- 300 fb⁻¹ / 3000 fb⁻¹ (HL-LHC) at 14 TeV extends mass reach
- HL-LHC gives us...
- Sensitivity on squarks/gluinos
 - 3 TeV limit on squarks
 - 2.5 TeV limit on gluinos
 - \sim 400-500 GeV rise in sensitivity with respect to 300 $\rm fb^{-1}$
- Discovery potential on $\chi_1^\pm\chi_2^0$ production
 - chargino mass of \sim 800 GeV for χ_1^0 masses below \sim 300 GeV.

- Search for $\tilde{t} \rightarrow t + \chi_1^0$ and $\tilde{t} \rightarrow b + \chi_1^{\pm}$
- Naturalness requires sub-TeV \tilde{t}

- Limit up to \sim 1.1 TeV, discovery up to \sim 0.9 TeV with HL-LHC
- $\sim 200~{\rm GeV}$ increase in sensitivity compared to 300 ${\rm fb}^{-1}$

Search for new physics at higher mass scale Exotics

• Expected sensitivity on high-mass resonances

model	$300 \ {\rm fb}^{-1}$	3000 fb^{-1}
$g_{KK} ightarrow t \overline{t}$	4.3 TeV	6.7 TeV
$Z'_{SSM} \rightarrow ee$	6.5 TeV	7.8 TeV
$Z'_{\rm SSM} \rightarrow \mu\mu$	6.4 TeV	7.6 TeV

- Flavour-Changing Neutral Current in top decays
 - SM prediction on branching ratios $< 10^{-12}$
 - Some new physics model, e.g. SUSY with R-parity violation, enhance the FCNC decay branching ratios. Depending on the models, up to 10⁻⁴

• Expected limits in the range between 10^{-5} and 10^{-4}

Vector boson scattering

• Higgs boson regularises the vector boson scattering cross-section

• Anomalous quartic couplings can appear in extensions of the SM

• m_{41} of $ZZjj \rightarrow IIIIjj$ with and without ZZ resonance at 1 TeV.

model	$300 \ {\rm fb}^{-1}$	3000 fb^{-1}
$m_{ m resonance}=500$ GeV, $g=1.0$	2.4σ	7.5 σ
$m_{ m resonance} = 1000$ GeV, $g = 1.75$	1.7σ	5.5σ
$m_{ m resonance} = 1000$ GeV, $g = 2.5$	3.0 σ	9.5 σ

WHIZARD MC generator

 $O(10)\sigma$ measurement of ~ TeV WW resonance with WW $\rightarrow l\nu jj$ mass.

2012-12-20

LHC physics prospect

- LHC experiments entered the era of Higgs-like boson measurement
- 300 fb⁻¹ at 14 TeV enables us
 - to measure the properties of the Higgs-like boson
 - to explore higher mass scale
- 3000 fb $^{-1}$ at 14 TeV will allow us
 - to perform more precise measurement of the Higgs properties
 - to extend mass reach for new physics searches
 - to explore vector boson scattering

