Higgs branching ratio studies I : τ pair

Shin-ichi Kawada Hiroshima University

Collaborators: Tomohiko Tanabe (ICEPP), Taikan Suehara (ICEPP), Tohru Takahashi (Hiroshima U), Keisuke Fujii (KEK)

Introduction

- Higgs-like particle was found at the LHC!
- Investigation of the detail of that particle is important, especially the verification of mass generation mechanism.

Estimation of precision of branching ratio of $H \rightarrow \tau \tau$ mode

Previous study with fast simulation -> 4.6 - 7.1 % ($M_H = 120$ GeV, RDR)

Analysis condition

- Higgs properties
 - $-M_H = 120 \text{ GeV}$
 - $-\operatorname{Br}(H \to \tau \tau) = 8.0\%$ (PYTHIA)
- Machine parameters
 - $-E_{\rm CM} = 250 \; {\rm GeV}$
 - Integrated luminosity $L = 250 \text{ fb}^{-1}$
 - Polarization $P(e^+, e^-) = (+0.3, -0.8)$
- Simulation conditions
 - Full simulation with ILD_00 detector model
 - Using LOI samples for now

Analysis of $Z \rightarrow ll \mod l$

(See also my talk @ LCWS12)

Signal process

We concentrated on $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$.

Main background

Event reconstruction

1: Z reconstruction

do not use tracks displaced

 P_{track}

lepton ID

 $E_{\text{ECAL}} + E_{\text{HCAL}}$

from IP

identify e/μ by using

 τ rejection

Z reconstruction (1) : Lepton ID

9

Z reconstruction (2) : τ rejection

use impact parameter for τ rejection d_0 : perpendicular to beam axis (x-y plane) z_0 : along to beam axis

τ rejection : example plot

τ reconstruction

Event selection $(Z \rightarrow ee)$

Event selection $(Z \rightarrow ee)$

Event selection $(Z \rightarrow \mu \mu)$

Cut 0 (pre-selection): require $\mu^+\mu^-$ candidate, select μ and τ # of τ^+ candidate == 1, # of τ^- candidate == 1 Cut 1: # of tracks <= 8 Cut 2: $110 < E_{\rm vis} < 240$ Cut 3: $|\cos\theta_{\rm missmom}| < 0.98$ Z mass cut Cut 4: $70 < M_7 < 110$ Cut 5: $90 < E_Z < 120$ Cut 6: $E_{\rho^+} < 90, E_{\rho^-} < 90$ Cut 7: $\cos \theta_{\rho^+ \rho^-} < -0.2$ Cut 8: $\cos\theta_{\tau^+\tau^-} < -0.45$ suppress Cut 9: $118 < M_{recoil} < 140$ irreducible bkg

Event selection $(Z \rightarrow \mu \mu)$

$Z \rightarrow ll \text{ mode results}$

	$ZH \\ \rightarrow ee\tau\tau$	<i>ΖΗ</i> no τ	<i>ее</i> ττ	other 4 lep.	other SM Bkg			
No cut	228.3	7320	2.382e+05	5.423e+05	1.494e+10			
After cut	97.2	2.5	63.6	7.7	0.025			
significance($Z \rightarrow e^+e^-$) = $\frac{97.2}{2}$								

 $\sqrt{97.2 + 73.8}$

	ZH $ ightarrow \mu\mu au au$	<i>ΖΗ</i> no τ	μμττ	other 4 lep.	other SM Bkg
No cut	211.1	7320	3513	7.589e+05	1.494e+10
After cut	129.5	3.2	3.2 84.0 17.8		0.16
· · · · · ·		+ -		129.5	

significance
$$(Z \to \mu^+ \mu^-) = \frac{12.510}{\sqrt{129.5 + 105.2}} = 8.5\sigma$$

Analysis of $Z \rightarrow qq$ mode

Main background

qqqq $qqll (qq\tau\tau : irreducible)$ qqlv

$$ZH \rightarrow llqq$$
$$(Z \rightarrow \tau\tau : mimic signal)$$

Event reconstruction

1: τ reconstruction

clustering based on τ mass τ -jet finder

2: Z reconstruction

Durham 2-jet clustering

TaJet finder (1)

High-purity tau tagging in presence of jet background

- 1. Order charged tracks by largest energy
- 2. Select the first track
- 3. Combine neighboring particles -> "Tau Jet"
 - Combined mass < 2 GeV && $\cos\theta$ w.r.t. jet axis > 0.98
- 4. Tau selection (tuned for rejecting qq background)
 - 1. Tau Jet energy > 3 GeV
 - 2. Veto >=3 prong + neutrals (> 1 GeV)
 - 3. Cone energy ($E_{cone} < 0.1E_{taujet}$) with $cos\theta_{cone} = 0.9$

ZZ -> qqττ 250 GeV, 13600 taus	1-prong		3-prong w	o/ neutral	3-prong w/ neutral		
	tau	non-tau	tau	non-tau	tau	non-tau	
No cut	10326	43286	716	1616	777	4280	
E _{taujet} > 3	8679	7145	708	1304	742	4244	
E _{cone} < 0.5E _{taujet}	7170	1009	621	181	681	1813	
E _{cone} < 0.2E _{taujet}	6455	446	567	64	616	1020	
E _{cone} < 0.1E _{taujet}	6001	254	527	30	570	22620	

by T. Suehara

TaJet finder (2)

- 5. Jet charge recovery (for better efficiency)
 - Tracks with energy < 2 GeV are detached one by one until tau jet has 1 or 3 tracks and sum charge is +1 or -1
 - Jet is rejected if above condition cannot be satisfied after detaching all < 2 GeV tracks
- 6. Return to 2. (previous page) with the remaining tracks
 - Stop after all E > 2 GeV tracks have been processed

# tau jets	qq ττ	qqln
0	27.1%	47.6%
1	36.3%	46.6%
2	34.0%	5.4%
>3	2.4%	0.3%
purity 94.2%	of tau in q overall	q ττ:

Event selection $(Z \rightarrow qq)$ Cut 0 (pre-selection) # of q jets == 2, # of τ jets == 2, # of τ^+ jet == 1, # of τ^- jet == 1, # of tracks in $\tau[0]$ jet <= 3, # of tracks in $\tau[1]$ jet <= 3, !(# of tracks in $\tau[0]$ jet == 3 && # of tracks in $\tau[1]$ jet == 3) Cut 1: 9 <= # of tracks < 50 select τ Cut 2:120 $< E_{\rm vis} < 235$ Cut 3: $|\cos\theta_{\text{missmom}}| < 0.98$ Cut 4: $80 < M_Z(M_{ag}) < 100$ Z mass cut Cut 5: $80 < E_Z(E_{qq}) < 130$ Cut 6: $\cos\theta_{aa2i} < -0.2$ suppress Cut 7: $15 < M_{\tau^+\tau^-} < 115$ Cut 8: $E_{\tau^+\tau^-} < 120$ irreducible bkg Cut 9: $\cos \theta_{\tau^+ \tau^-} < -0.45$ Cut 10: $\log_{10}(|d_0 \operatorname{sig}(\tau^+)|) + \log_{10}(|d_0 \operatorname{sig}(\tau^-)|) > 0$ Cut 11: $\log_{10}(|z_0 \operatorname{sig}(\tau^+)|) + \log_{10}(|z_0 \operatorname{sig}(\tau^-)|) > -0.1$ Cut 12: $113 < M_{recoil} < 154$ 24

Event selection $(Z \rightarrow qq)$

ILC Tokusui Workshop 2012 (2012/12/21)

$Z \rightarrow qq$ mode result

	$\frac{ZH}{\rightarrow qq\tau\tau}$	<i>ΖΗ</i> no τ	qqττ	ZH with $Z \rightarrow \tau \tau$	other SM Bkg
No cut	4233	4.803e+04	4.168e+05	2596	1.475e+10
After cut	927.9	8.6	681.8	31.5	325.4

significance
$$(Z \to qq) = \frac{927.9}{\sqrt{927.9 + 1047}} = 20.9\sigma$$

Summary

• We estimated the precision of the branching ratio of $H \rightarrow \tau \tau$ mode with full detector simulation (ILD model) at $E_{CM} = 250$ GeV. $L = 250 \text{ fb}^{-1}, M_H = 120 \text{ GeV}, Br(H \rightarrow \tau \tau) = 8.0 \%$

	$Z \rightarrow ee$	$Z ightarrow \mu \mu$	Z ightarrow qq
significance	7.4 <i>σ</i>	8 .5σ	20.9 <i>σ</i>

Combined significance = 23.7
$$\sigma$$

$$\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br} = 4.2\%$$

ILC Tokusui Workshop 2012 (2012/12/21)

Extrapolated to 125 GeV

	$M_H = 120 \text{ GeV}$	$M_H = 125 \text{ GeV}$
$Br(H \to \tau \tau)$	8.0 % (PYTHIA)	6.32 % (LHC-tuned)
$Z \rightarrow ee$	7.4σ	5.8σ
$Z \to \mu \mu$	8.5σ	6.5σ
$Z \rightarrow qq$	20.9σ	15.9σ
Combined	23.7σ	18.1σ
$\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}$	4.2 %	5.5 %

Future plans

- Higgs mass ($\tau\tau$ mass) reconstruction
- Analysis of $Z \rightarrow \nu \nu$ mode
- Analysis with Neural Network

Backup slides

Cut Summary $Z \rightarrow ee \mod e$

Cuts	eeH	not $H o au au$	εεττ	other 4 leptons	ee	εγ	ŶŶ	other SM Bkg	sig.
none	228.3	7320	2.382e+05	5.243e+05	4.325e+09	3.022e+09	7.532e+09	6.350e+07	0.00187
pre-sel	171.3	47.05	1.338e+04	2.091e+05	4.692e+06	1.365e+06	4.146e+06	4.702e+04	0.0534
# of tracks <= 8	169.4	41.56	1.316e+04	2.083e+05	4.560e+06	1.352e+06	4.131e+06	4.218e+04	0.0532
$110 < E_{\rm vis} < 240$	167.4	39.41	1.216e+04	1.562e+04	2.422e+06	8.830e+05	3.406e+06	2.563e+04	0.0642
$ \cos\theta_{ m missmom} $ < 0.98	164.4	38.33	8987	3164	6.936e+05	4.364e+04	31.26	1.044e+04	0.189
$70 < M_Z < 110$	154.7	30.60	2653	1039	6177	2.091e+04	23.83	1130	0.863
$90 < E_Z < 120$	150.6	28.99	1085	394.5	0	1.840e+04	23.83	638.3	1.05
$\begin{array}{l} \cos \theta_{e^-} < 0.92 \\ \cos \theta_{e^+} > -0.92 \end{array}$	136.2	25.43	473.8	111.5	0	225.0	0	311.9	3.80
$\begin{array}{l} 20 < E_{e^-} < 90 \\ 20 < E_{e^+} < 90 \end{array}$	135.5	25.40	407.1	100.9	0	225.0	0	259.3	3.99
$\cos\theta_{e^-e^+} < -0.2$	134.0	25.05	354.7	89.55	0	225.0	0	257.5	4.07
$\cos\theta_{\tau^-\tau^+} < -0.4$	132.2	4.159	214.6	64.91	0	0	0	151.2	5.55
$\begin{array}{l} \cos \theta_{\tau^-} < 0.92 \\ \cos \theta_{\tau^+} > -0.92 \end{array}$	124.7	3.697	186.8	19.69	0	0	0	3.545	6.78
$116 < M_{\rm recoil} < 134$	97.19	2.491	63.61	7.657	0	0	0	0.025	7.43

Cut Summary $Z \rightarrow \mu\mu$ mode

Cuts	μμΗ	not $H o au au$	μμττ	other 4 leptons	ee	eγ	γγ	other SM Bkg	sig.
none	211.1	7320	3513	7.589e+05	4.325e+09	3.023e+09	7.532e+09	6.350e+07	0.00187
pre-sel	168.5	43.01	1698	7547	0	6062	71.56	1598	1.28
# of tracks <= 8	167.4	39.65	1684	7538	0	6062	71.56	1266	1.29
$110 < E_{\rm vis} < 240$	164.8	37.85	1629	2973	0	3081	33.17	638.7	1.78
$ \cos\theta_{ m missmom} < 0.98$	160.6	36.97	1423	434.1	0	0	0	61.42	3.49
$70 < M_Z < 110$	156.2	33.01	1078	129.0	0	0	0	47.94	4.11
$90 < E_Z < 120$	154.6	32.55	394.5	81.93	0	0	0	38.15	5.86
$\begin{array}{l} E_{e^-} < 90 \\ E_{e^+} < 90 \end{array}$	154.6	32.55	366.4	73.89	0	0	0	34.01	6.01
$\cos\theta_{e^+e^-} < -0.2$	152.8	32.23	321.4	68.64	0	0	0	33.85	6.19
${\rm cos}\theta_{\tau^+\tau^-}<-0.45$	149.0	3.948	184.2	52.78	0	0	0	0.603	7.54
$118 < M_{\rm recoil} < 140$	129.5	3.185	84.02	17.76	0	0	0	0.155	8.46

Cut Summary $Z \rightarrow qq$ mode

$l = e \text{ or } \mu$	qqH H o au au	qqH $H \rightarrow others$	qqqq	$\gamma\gamma ightarrow qqqq$	qqll	$\gamma\gamma ightarrow qqll$	qqlv	$\gamma\gamma ightarrow qql u$	sig.
No cut	4233	4.803e+04	4.084e+06	733.6	3.555e+05	1627	2.788e+06	394.3	0.03
pre-sel 1	1659	605.3	1.450e+04	0.108	6.426e+04	375.0	1.314e+05	28.18	0.32
pre-sel 2	1647	578.8	1.284e+04	0.108	6.378e+04	375.0	1.249e+05	22.55	0.32
pre-sel 3	1629	568.8	1.193e+04	0.108	6.370e+04	375.0	1.247e+05	22.55	0.32
# of tracks	1625	543.7	1.150e+04	0.108	6.054e+04	278.9	1.213e+05	22.55	2.02
E _{vis}	1581	485.2	4132	0	2.098e+04	86.31	1.186e+05	22.55	2.52
$\cos heta_{ m missmom}$	1547	467.9	2014	0	8304	1.122	1.165e+05	22.55	3.57
$M_Z(M_{qq})$	1230	274.1	258.2	0	3780	1.122	3962	5.630	8.88
$E_Z(E_{qq})$	1230	274.1	238.0	0	3541	1.122	3868	5.630	9.19
$\cos \theta_{qq2j}$	1153	257.9	139.3	0	2278	1.122	2366	5.630	10.7
$M_{ au au}$	1148	229.1	100.3	0	2117	1.122	2211	5.630	11.0
$E_{ au au}$	1131	229.1	90.15	0	1671	1.122	2165	5.630	11.1
$\cos \theta_{ au au}$	1125	31.94	29.97	0	704.9	1.122	867.7	0	15.7
d_0 sig	1006	11.69	19.64	0	139.5	0	269.4	0	17.7
z ₀ sig	973.6	8.771	19.64	0	65.83	0	198.4	0	17.9
M _{recoil}	927.9	8.625	19.64	0	47.78	0	116.2	0	20.9

$l = e \text{ or } \mu$	qqH H o au au	llH	ττΗ	qqττ	$\gamma\gamma ightarrow qq au au$	qqτν	$\gamma\gamma ightarrow qq au u$	other SM bkg	sig.
No cut	4233	5377	2596	4.168e+04	1762	1.326e+06	225.6	1.474e+10	0.03
pre-sel 1	1659	2765	811.2	1.172e+04	64.58	5.213e+04	0	2.621e+07	0.32
pre-sel 2	1647	2761	801.6	1.161e+04	35.30	4.948e+04	0	2.570e+07	0.32
pre-sel 3	1629	2761	792.2	1.149e+04	34.81	4.839e+04	0	2.545e+07	0.32
# of tracks	1625	2680	756.6	1.133e+04	32.38	4.697e+04	0	3.892e+05	2.02
$E_{\rm vis}$	1581	1015	731.9	1.088e+04	30.55	4.423e+04	0	1.907e+05	2.52
$\cos\theta_{ m missmom}$	1547	860.3	713.1	1.004e+04	1.832	4.162e+04	0	5419	3.57
$M_Z(M_{qq})$	1230	275.4	81.36	7138	0	1553	0	641.6	8.88
$E_Z(E_{qq})$	1230	275.0	81.07	6309	0	1506	0	567.8	9.19
$\cos\theta_{qq2j}$	1153	269.5	78.54	3541	0	921.5	0	562.2	10.7
$M_{ au au}$	1148	266.6	76.59	3424	0	781.6	0	483.2	11.0
$E_{ au au}$	1131	263.3	76.58	3420	0	781.6	0	481.4	11.1
$\cos heta_{ au au}$	1125	152.9	41.97	1362	0	354.2	0	464.4	15.7
d_0 sig	1006	27.94	36.93	1211	0	270.5	0	238.0	17.7
z ₀ sig	973.6	12.21	36.03	1161	0	237.2	0	237.6	17.9
<i>M</i> _{recoil}	927.9	10.25	31.48	681.8	0	130.3	0	1.263	20.9