CCD And Readout Electronics

Abhinav Dubey E.Kato, H.Sato, H.Ikeda, K.Itagaki, A.Ishikawa T.Saito, Y.Sugimoto, Y.Takubo, H.Yamamoto ILC Tokusui Workshop 2012

• FPCCD

• CCD and ASIC Prototypes

• Test Systems

• Results

FPCCD

Vertex detector

- -- high impact parameter resolution (near interaction point)
- -- accurate tagging (pixel occupancy ~1%)

Finely segmented pixel is required.

• FPCCD (Fine Pixel CCD) vertex detector.

- -- pixel size 5x5um² (high position resolution)
- -- fully depleted epi layer : 15um, Si total 50um (high two track separation)
- -- total number of pixel : 1.6 x 10¹⁰ (high speed readout)
- -- inter train readout (no beam induced RF noise)

For FPCCD we need to develop CCD and ASIC.

OHOKU

CCD and ASIC Prototypes

CCD and ASIC designed should have these features.

ASIC Prototype

Chip parameters	2 nd prototype	3 rd prototype
process	0.35um	0.25um
Chip area	4.3x4.3mm2	3.7x3.75mm2
Gain coverage(from CCD)	12.5~200 (8 steps)	32~64(2 steps)
# of channels	8ch	8ch
Input capacitance form CCD	20pF	3.2pF

оноки

UNIVERSIT

Eriko Kato

- Power consumption
 - -- improved : $30.6 \text{ mW/ch} \rightarrow 5.8 \text{ mW/ch}$
- INL (Integral non linearity)
 - -- Showed curvatures in linearity.
 - -- Caused upstream circuits.
 - -- improved : 17% -> < 2%

Radiation tolerance

-- 3rd prototype implemented DICE-FF radiation hardened by design flip-flop with high single event effect (SEE) immunity.

• DNL (Differential non linearity)

- -- due to displacement from bit weight it becomes meta-stable at bit change. Thus causes bit jump at higher frequencies.
- -- improves in 3rd prototype.

Eriko Kato

CCD Prototype

• Pixel size 12um x 12um

- -- chip size :8.2mm(H) x 7.5mm(V)
- -- thickness : epi layer 15um, Si total 50um
- -- number of channels : 4

has been tested.

Pixel size 6um x 6um

- -- horizontal shift register size : 6umx12um
- -- thickness : epi layer 15um, Si total 50um
- -- number of channels : 4
- test is going on.

12 x 12 um

6 x 6 um

Test Systems

Long cables : not easy to detect series of 3 nsec width ADC output pulses

100Mbps SiTCP : too small data rate (planed to change to 1GbE) Limited number of ROB and VME crate : 2 sites (Tohoku Univ., KEK)

Abhinav Dubey

JSPS-ILC Meeting

JSPS-ILC Meeting

Features

- Employ SEABAS2 (1GbE, ADC and DAC on board, compact size)
- Shorter and less cables (FFC support LVDS spec.)
 - -- Reliable operation at 100MHz or higher frequency can be expected by this LVDS cable and AFFROC new feature.
- On board DAC and ADC support automatic testing and self-diagnostics
 -- example: AFFROC linearity test will be automated by using on-board DAC and AFFROC new feature.
- SEABAS1 available for early development of test circuits and programs
- Compact to support Beam Test.
- Additional site: Shinshu University.

- Employing SEABAS2 saves our development man power and cost.
- User FPGA + SiTCP structure is the same as the previous VME base ROB.
- Most of the logic circuits in the previous test system can migrate to the new User FPGA of SEABAS2 board.
 - -- Previous User FPGA : Xilinx Spartan 3A family "XC3S700A"

1,472 CLB 360Kbit RAM

-- SEABAS2 User FPGA: Xilinx Vertex 5 family "XC5VLX50"

7,200 CLB 2,160Kbit RAM

- Logic circuits to support four AFFROC may fit in one SEABAS2 board.
- We will buy 3 SEABAS2 boards at Tohoku. One of them is for SOI but we can use them as multi-SEABAS2 system for beam test to check position resolution and efficiency.
- 1GbE is still bottle neck, to support four CCD+AFFROC, so we need some data compression technology. Or we have multi-SEABAS2 board option.

SEABAS2 Based AFFROC Test System

JSPS-ILC Meeting

12 um CCD Test With ASIC Prototype 2

оноки

5.9Ke

6.4K

ADC count[LSB]

Fe55 spectrum

15945

49.26

7.279

2696 / 35

 52.92 ± 0.02

358.1±18.5

58.27 ± 0.04 0.7281± 0.0288

-254.2 ± 15.5

 17.07 ± 0.77

 -0.2053 ± 0.0083

 $1.336 \pm$

h2

• CCD (Hamamatshu Photonics)

- -- 12 x 12 um²
- -- thickness epi layer 15 um, Si total 50 um

Setup

- -- irradiation time 10s, -40°C
- -- 25 MHz ASIC operation clock
- --S/N = 37 (single pixel hit extraction)
- -- energy resolution 120 eV

• Pedestal

- In ILC conditions (200ms and -40°C) dark current mainly suppressed.
- Noise 55 e(from CCD readout)

3500

3000

2500

2000

1500

1000

500

Entries

Mean

RMS

 χ^2 / ndf

center1

constant2

center2

sd1

sd2

pol0

pol1

pol2

оноки

UNIVERSITY

Eriko Kato

• CCD (Hamamatshu Photonics)

- -- 12 x 12 um²
- -- thickness epi layer 15 um, Si total 50 um

Setup

- -- irradiation unit : 2 MeV β ray
- -- Sr90 : ~10°C, 2.5MPix/sec

• Sr90

- -- checked charge distribution with 2MeV β -ray.
- negligible charge leakage to adjacent pixels.

Tests with New ASIC i.e. AFFROC

JSPS-ILC Meeting

JSPS-ILC Meeting

Linearity looks reasonable, same result for all channels.

оноки

UNIVERSITY

Gain/ADC Sigma vs Frequency

Hisao Sato

Channel 4-7

Gain [ADC count/mV] vs Freq [MHz]

Frequency dependency looks reasonable. It may need optimization.

Channel 4-7

Sigma [ADC count] vs Freq [MHz] Needs further study to reduce noise.

- Presented status of CCD and ASIC tests.
- We tested successfully ASIC prototype 2 with 12um CCD.
- Successfully migrated to SEABAS2 based new test system.
- AFFROC characterization is going on.
- Power consumption goal of AFFROC is achieved.
- Frequency dependency of gain looks reasonable.
- We have just started looking into frequency dependence of noise which doesn't looks reasonable, it worsens at higher frequencies.
- Other than noise, so far no major problem has been seen in AFFROC.
- Fe55 test with 6um CCD will be done soon (before year end). all setup is ready. Just have to take data.

BACKUP

Gain vs Frequency

İİL

10²

10²