${ m H} ightarrow \mu \mu$ @ 1 TeV Update

C. Calancha (KEK, IPNS) Weekly Physics & Software Meeting

December 19th, 2012

1

- Fixed one bug (i set wrong weight for one background) an reoptimized.
- Generated toy samples (100) of signal and main backgrounds for 500 fb^{-1} , 1 ab^{-1} and 2 ab^{-1} .
- Extracted from fits to these toy MC samples the statistical error $\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br} = \frac{\Delta N_S}{N_S}$

 $H \rightarrow \mu \mu$

- E=1 TeV
- cross section: 748.4 fb⁻¹(lr), 5.905 fb⁻¹(rl)
- branching ratio: 0.000221
 - ≈ 45 events with L=500 ${\rm fb}^{-1} and (e^{-1},e^{+1}){=}(-0.8,{+}0.2)$
 - $\bullet~\approx 4$ events with L=500 $\rm fb^{-1}and~(e^{-1},e^{+1}){=}(+0.8,-0.2)$
- ILCSOFTv16
- Included overlay $\gamma\gamma \rightarrow$ hadrons

Main Background Sources

 $ZZ(WW) \rightarrow \nu \nu \mu \mu$

 $Z \rightarrow \nu \nu \mu \mu$

- same final state as the signal.
- Only showed a few of the total Feynman diagrams.

Other Background Sources

Other sources considered:

- $Z \rightarrow \mu \mu$
- 4f_sw_l
- 4f_ww_l
- 4f_zz_l

(There are more details in the back up)

- Performed new optimization after fixing my bug
- Estimated the Precision on the $\frac{\Delta(\sigma \cdot Br)}{\sigma \cdot Br}$

Optimization Scans

 Signal optimized over all backgrounds with Score Func. <u>S</u>
 <u>S</u>

- S: signal inside 123.92 $< m_{\rm H} <$ 126.08 (3 σ 's, $\sigma = 0.36 \ {\rm GeV/c^2}$)
- B: total back in sidebands (118,122) \cup (128,132) (normalized to signal region: $F=0.135=\frac{3\sigma}{4+4})$
- Variables are scanned until we rise a stable point.
 - $var_1 \rightarrow var_2 \rightarrow var_{N-1} \rightarrow var_1$
 - If var_i best value changed we scan var₁ again.
 - Any var changed in a full cycle (var₁ \rightarrow var₁): we found a stable point.
- A new variable is added var_N and we scan it.
- New cycle of scans to find a new stable point: $var_1 \rightarrow var_2 \rightarrow var_N \rightarrow var_1$

Order on variables

		BDT + Cuts		MLP + Cuts	
Cut Based		Verieble	heat Value	Variable	heat) (alua
Verieble	heat Value		Dest value	Variable	Dest value
variable	best value	min BD I Out	-0.028	min MLPOut	0.40
min <i>¥</i> T	40	min <i>¥</i> T	10	min <i>¥</i> T	15
min <i>Ę</i>	400	min <i>Ę</i>	350	min <i>Ę</i>	350
min P _T (H)	40	max E _{vis}	450	max E _{vis}	450
min $P_T(\mu^+)+P_T(\mu^-)$	60	min P _T (H)	25	min $P_T(H)$	40
min $\cos(\mu^+, \mu^-)$	no cut	min $P_T(\mu^+)+P_T(\mu^-)$	60	min $P_T(\mu^+)+P_T(\mu^-)$	60
$\max d_0 $	no cut	min $\cos(\mu^+, \mu^-)$	no cut	min $\cos(\mu^+, \mu^-)$	no cut
$\max z_0 $	no cut	max do	0.02	max do	No cut
1 01		max zol	0.055	max zol	No cut
	-20 -20 -10 -10 -10 -10 -0 -0				0 - 15 - 10 5 0
Pt _{µ1} +P	t _{µ2} [GeV/c]	visi	bleE	z0	

Statistical Precision/ Summary

Method	$L=500 \text{ fb}^{-1}$	$L=1 ab^{-1}$	$L=2 ab^{-1}$
cut Based	33.3(1.4)	25.8(0.8)	19.5(0.7)
BDT	32.8(1.1)	23.4(0.7)	18.0(0.5)
MLP	30.8(1.0)	24.6(0.6)	17.9(0.5)

(*) Quoted errors inside braquets are from # toys (100)

Back Up

FSAR in ${\rm H} \rightarrow \mu \mu$ (probability 63 %)

- μ^+,μ^- (or both) emit γ 's (includes interaction with material).
- That causes low tails in Higgs mass distribution
- Tipicaly angle between emited γ and μ very small $\cos(\Delta\theta) \approx 1$
 - left plot: $cos(\mu, \gamma)$ distribution
 - center plot: cos(μ, γ) distribution E(γ)> 500 MeV
 - right: m(μ , μ) w/ and w/o $\mu \rightarrow \mu \gamma$ correction.
- Added to muon P/E from γ's inside cone (semiangle 11.48°)

Final State Radiation (FSAR)

FSAR in ${\rm H} \rightarrow \mu \mu$ (probability 62.70 %)

- $m_{\mu} = 0$ in whizard.in (*)
- Print out of the m_{μ} running over the sdthep files shows the right mass (0.10566 MeV/c²)
- Generated/Sim/Reco new 10⁴ signal events with same initial configuration but $m_{\mu} = 0.10566$.
 - Similar probability for $\mu \rightarrow \mu \gamma$: 63.26 %
- Generator level: $P(\mu_1 \rightarrow \mu_1 \gamma \text{ OR } \mu_2 \rightarrow \mu_2 \gamma) \approx 0.62$

(*) (http://www.slac.stanford.edu/ timb/higgs_production/ffh_m120/E1000-B1b_ws.Pvvh_mumu.Gwhizard-1.95.eL.pR.I36003/whizard.in)

C. Calancha, calancha@post.kek.jp

FSAR

- Muon (PDG=13) stable.
- Anti-muon (PDG=-13) emit γ .

PDG	gen Status	energy	P_{T}	$\cos \theta$
22	2	0	0	1
22	2	1.33953	1.33811	-0.0461053
25	2	262.186	143.788	0.78151
22	1	0	0	1
22	1	1.33953	1.33811	-0.0461053
25	2	262.186	143.788	0.78151
13	2	214.899	145.462	0.736086
-13	2	47.2871	41.8939	0.46378
13	1	214.876	145.447	0.736086
-13	2	47.3096	41.8911	0.464079
-13	1	47.1372	41.7619	0.463747
22	1	0.17236	0.14843	0.508333

FSAR

- Muon (PDG=13) emit γ .
- Anti-muon (PDG=-13) stable.

PDG	gen Status	energy	P_{T}	$\cos \theta$
22	2	5.47783e-14	3.58122e-16	0.999979
22	2	4.76897e-06	2.51788e-08	-0.999986
25	2	209.414	63.331	0.926239
22	1	5.47783e-14	3.58122e-16	0.999979
22	1	4.76897e-06	2.51788e-08	-0.999986
25	2	209.414	63.331	0.926239
13	2	144.678	14.1117	0.995232
-13	2	64.736	63.6818	0.179721
13	2	144.678	14.1117	0.995232
-13	1	64.736	63.6818	0.179721
13	1	144.314	14.0767	0.995231
22	1	0.363252	0.0351287	0.995313

• Both, muon a-muon stable (status = 1)

PDG	gen Status	energy	P_{T}	$\cos \theta$
22	2	74.5424	21.9292	0.955749
22	2	0.0134528	0.000106008	-0.999969
25	2	231.598	142.949	-0.680024
22	1	74.5424	21.9292	0.955749
22	1	0.0134528	0.000106008	-0.999969
25	2	231.598	142.949	-0.680024
13	1	200.504	160.48	-0.599486
-13	1	31.094	28.5214	-0.398268

FSAR

• Both, muon a-muon unstable (status = 2)

PDG	gen Status	energy	P _T	$\cos\! heta$
22	2	0.0021251	0.000231734	0.994037
22	2	4.99517e-07	3.4965e-09	-0.999976
25	2	231.093	159.696	-0.57004
22	1	0.0021251	0.000231734	0.994037
22	1	4.99517e-07	3.4965e-09	-0.999976
25	2	231.093	159.696	-0.57004
13	2	20.1112	20.1108	0.0034987
-13	2	210.982	179.504	-0.525486
13	2	20.091	20.0899	0.00348981
-13	2	211.002	179.483	-0.525528
13	2	20.0225	20.0221	0.00343475
22	1	0.068509	0.0684959	0.0195483
-13	1	210.136	178.649	-0.526524
22	1	0.866272	0.836249	-0.260987
13	1	20.0224	20.022	0.0034356
22	1	3.47889e-05	3.04306e-05	-0.48463

• Next slide shows plots before and after recovering for FSAR.

- Blue plot: no correction.
- Cyan plot: Added photons inside cone with semiangle α , $\cos \alpha = 0.98$
- Red plots: Added photons inside cone if they have P_T (respect μ direction) lower than a may value.
- Not big differences: decided just keep using same method as before.

RecoverFSAR

M(μ,μ) [GeV/c²]

130

130

Preselection

2 Muons

- 2 opposite charged PFO's
- *E* > 15 GeV

•
$$E_{calE}/(E_{calE}+E_{calH}) < 0.5$$

• $(E_{calE}+E_{calH})/|\vec{P}|<0.3$

- No isolation requirement.
- Table signal Efficiency next slide

•
$$E_{muon1} + E_{muon2} < 400 \text{ GeV}$$

•
$$|M(\mu^+,\mu^-) - 125| < 30 \text{ GeV/c}^2$$

C. Calancha, calancha@post.kek.jp

 $H \rightarrow \mu \mu$

• The efficiency/purity on the muon selection was checked using MCTruth (RecoMCTruthLink, MCParticlesSkimmed).

Test Efficiency/Purity

- Efficiency: $\frac{\# \text{ PFO match pass cuts}}{\# \text{ muons MC}}$
- Purity: $\frac{\# \text{ PFO match pass cuts}}{\# \text{ PFO pass cuts}}$
- PFO match means PandoraPFO's identified as muons from $H \rightarrow \mu\mu$ using MCTruth information.

Signal Efficiency (%), $\sigma = 0.36 \text{ GeV/c}^2$

Selection	Efficiency	# Events
0) Nature	1.00	45
1) reco	99.53 (99.53)	44.79
2) μ selec.	99.88 (99.41)	44.73
3) <i> mH</i> − 125 <i> </i> < 30, <i>eH</i> < 400	86.06 (<mark>86.57</mark>)	38.73
x) <i>mH</i> – 125 < 3 * σ	82.86 (71.73)	32.28

• Only muons from H $\rightarrow \mu\mu$ with E > 15 GeV(99.55 % of the produced muons satisfy this requirement).

Muon Selection Efficiency/Purity

process	effi (%)	purity(%)
signal	98.1747	99.8674
2f_z_bhabhag	NA	0
2f_Z_hadronic	95	37.2549
2f_Z_leptonic	95.4683	95.4683
4f_WW_leptonic	98.1707	95.2663
4f_ZZWWMix_hadronic	92.3077	21.0526
4f_ZZWWMix_leptonic	97.4763	96.5625
4f_ZZ_hadronic	94.7368	45.5696
4f_ZZ_leptonic	96.1123	97.8022
4f_ZZ_semileptonic	98.1595	85.5615
4f_singleW_leptonic	99.0741	99.0741
4f_singleZnunu_leptonic	98.0831	99.3528
4f_singleZnunu_semileptonic	100	52.381
4f_singleZsingleWMix_leptonic	NA	0
4f_singleZee_semileptonic	100	27.2727
4f_singleZee_leptonic	97.7778	95.6522
4f_WW_semileptonic	96.4103	87.4419
4f_singleW_semileptonic	100	31.25

High efficiency/purity for the relevant modes (leptonic final states).

_

Signal VS sznu_I Distributions

Event Variables looks very similar.

• Only the mass looks different.

C. Calancha, calancha@post.kek.jp

Naive Estimation of $\Delta(\sigma \cdot Br)/\sigma \cdot Br$

• Signal: 3 σ ($\sigma \approx$ 0.36 GeV/c²) around peak

- sznu: sidebands (120,124) & (126,130)
- zzorww: assumed flat, averaged over (100,140)
 - Normalized number of background events to signal window size

• Alternative calculation provides 34 %

- Fitting sznu and extrapolatin integral in region (124.53, 125.47)
- Previous slide used bigger signal region definition (123.92, 126.08)
- Method using toy MC stil under development
- No good fit to the data, so no realistic templates to generate toy samples. :-(