PAC report

Yasuhiro Sugimoto 2012/12/19

PAC meeting

- Web page
 - <u>http://ilcagenda.linearcollider.org/conferenceD</u> isplay.py?confld=5843
- Physics and detector session on Dec. 14th
- Tim Barklow presented SiD analysis quite in detail, while I presented ILD results very briefly

My presentation for benchmark analysis

LOI benchmark

ECM (GeV)	Observable	Precision	Comments	Post LOI analysis
250	$\sigma(e^+e^- \rightarrow Zh)$	2.5%	Model independent	
	m _h	32 MeV	Model independent	
	m _h	27 MeV	Model dependent	
250	Br(h→bb)	2.7%		2.7%*
	Br(h→cc)	12%	Includes 2.5% of σ (Zh)	7.3%*
	Br(h→gg)	29%		8.9%*
	Br(h→ττ)			4.9%
	Br(h→WW*)			8.6%
500	$\sigma(e^+e^- \rightarrow \chi_1^+ \chi_1^-)$	0.6%		
	$\sigma(e^+e^- \rightarrow \chi_2^0 \chi_2^0)$	2.1%		
	m(χ ₁ +)	2.4 GeV	From kinematical edges Two masses (LSP and χ_1^+/χ_2^0) are	
	m(χ ₂ ⁰)	0.9 GeV		
	m (χ ₁ ⁰)	0.8 GeV	fitted simultaneously	

* http://arxiv.org/abs/arXiv:1207.0300 H.Ono, Akiya Miaymoto

LOI benchmark

ECM (GeV)	Observable	Precision	Comments	
500	σ(e+e-→ττ)	0.29%	θττ> 178degree	
	A^{τ}_{FB}	0.0025	θττ>178degree	
	Ρτ	0.007	Excluding a ₁ v	
500	$\sigma(e^+e^- \rightarrow tt)$	0.4%	(bqq)(bqq) only	
	m _t	40 MeV	Fully hadronic only	
	m _t	30 MeV	+ semi-hadronic	
	Γ _t	27 MeV	Fully hadronic only	
	$\Gamma_{\rm t}$	22 MeV	+ semi-hadronic	
	A _{FB}	0.0079	Fully hadronic only	
500	σ(e⁺e⁻→μ₋⁺μ₋)	2.5%	SPS1a' (smuon)	
	m(μ _L)	0.5 GeV		
500	m(τ ₁)	$0.1 GeV {\oplus} 1.3 \sigma_{\text{LSP}}$	SPS1a' (stau)	
1000	α ₄	-1.4< α ₄ <1.1	Strong EV/SB in V/V/ apottoring	
	α ₅	-0.9< α ₅ < 0.8	Shong Ewob in www scallening	

1TeV benchmark

- e⁺e⁻ → vvh
 - Higgs production cross section is larger than 250 GeV
 - Luminosity is larger than 250 GeV
 - Higgs $\rightarrow \mu\mu$ channel can be measured

Decay mode	σBr accuracy (500fb⁻¹, -0.8,+0.2)	Comments
bb	0.4%	STIN
СС	5%	Non
gg	4%	
WW*	3%	Fully hadronic mode only
μμ	??	

1TeV benchmark

- $e^+e^- \rightarrow W^+W^-$
 - Precise measurement of beam polarization
 - Two methods
 - Modified Blondel scheme: (+,+),(+,-),(-,+),(-,-) data required
 - Angular distribution of W \rightarrow Analysis not finished yet

1TeV benchmark

- e⁺ e⁻ → t t h
 - Fully hadronic mode (8 jets, no isolated lepton) and semileptonic mode (6 jets + 1 isolated lepton) were used
 - Main background: ttbb, ttZ, and tt
 - Multivariable analysis technique is effective to reduce the background
 - Preliminary result on accuracy of top Yukawa coupling with 500fb⁻¹ (+0.8,-0.2) and 500fb⁻¹ (-0.8,+0.2)
 - 7.0% for semi-leptonic mode
 - 6.5% for hadronic mode
 - 4.8% for combined data

8

LOI-DBD common benchmark

- We used e⁺e⁻ → t t channel for the comparison between LOI and DBD analysis @500 GeV
- Forward-backward asymmetry is determined by hadronic decay mode
- Vertex charge determination is needed → good benchmark for vertex detector/finding
- Results with 500fb⁻¹, P(e⁻, e⁺)=(-0.8, +0.3) :

 A^t_{FB} = <u>Coming soon</u> (DBD)
 A^t_{FB} = 0.334±0.0079 (LOI)

Other physics processes

- Higgs self coupling
 - Zhh final state at 500 GeV
 - 27% accuracy in Zhh cross section = 44% accuracy in λ with 2ab⁻¹
 - vvhh final state at 1TeV
 - 17% accuracy in λ with 2ab⁻¹ (Fast simulation)
 - Full simulation study on going
- Further t t study
 - A^t_{FB} by semi-leptonic decay mode
 - 1% measurement can be done
 - A^t_{hel} (helicity asymmetry) measurement
 - t t at threshold: measurement of m_t and α_s

Discussion at PAC

SUSY mass

- There is large difference of the accuracy of SUSY masses between SiD and ILD in LOIs
- We discussed this issue and we understand the reason
- We still have to discuss how to present it in DBD → Tim will contact Jenny to discuss it

Higgs branching ratio at 1TeV

- SiD knows the unbelievable accuracy in Higgs branching ratio at 1TeV is wrong
- They will re-evaluate the accuracy

Beam polarization

 SiD and ILD should use same luminosity for each polarization combination

	L (-80%,+20%)	L (+80%,-20%)	SiD	ILD
tth	1000 fb ⁻¹	0	4.1%	NA
	500 fb ⁻¹	500 fb ⁻¹	4.6%	4.8%
WW	500 fb ⁻¹	500 fb ⁻¹	0.17% (e-)	In progress
vvh	1000 fb ⁻¹		In progress	?
	500 fb ⁻¹	(500 fb ⁻¹)		Results shown

 If possible, we should give the results of both cases (1ab⁻¹ with preferable polarization and 500fb⁻¹ each)
 → Gives a guideline for running plan at 1TeV

BR summary table

- IDAG suggested to make one table which summarizes precision of branching ratios of all accessible decay channels by ILC
- The table would be placed either in the Physics volume or in the introduction chapter of DBD
- Michael Peskin and Keisuke Fujii will discuss how to make it

All summary table

 In PEB meeting yesterday, Sakue-san mentioned that the directorate is considering to make a table summarizing all of the physics analysis results, and put it in the summary chapter

Summary

- We still have a lot of things to do
 - Finalize 1 TeV benchmark study and fix the results through internal review by middle of January (before SiD WS 16-18 Jan. 2013?)
 - Revise the description on LOI benchmark analysis to include post-LOI analysis
 - Discuss and coordinate with SiD to make the whole DBD self-consistent
 - Collaborate with RD and physics common task group to make summary tables