Status Update on WW analysis at 1 TeV

Aura Rosca
DESY

ILD Software/Analysis Meeting, 19 of December 2012

Introduction

- Assess the accuracy of the beam polarization measurement using annihilation data, at $\mathrm{E}_{\mathrm{CM}}=1 \mathrm{TeV}$.
- Use the process: $\mathrm{e}^{+} \mathrm{e}-$-> $\mathrm{W}^{+} \mathrm{W}^{-}->$qqlv, $\mathrm{I}=\mathrm{e}, \mu$
- High cross section, highly dependent on polarization
- Use the official DBD samples.
- Include signal and SM processes: 2f, 4f, 6f and $\gamma \gamma$->hadrons.
- Analysis done for $100 \mathrm{fb}^{-1}$ at each polarization

Polarization Measurement

After Correction: Blondel Method

Luminosity not Equally Distributed

Lumi not Equal - Benchmark Point

\% error polarization for $\mathbf{2 0 \%} \mathrm{e}^{+}$polarization

Angular Fit

LC Note

LCNOTE 01-XXX
31th January 2013

Measurement of the beam polarization at the ILC using the WW annihilation data

A. Rosca ${ }^{1}$
${ }^{1}$ DESY, Hamburg, D 22607, Germany

Abstract

An assesment of the achievable accuracy for the measurement of the longitudinal polarization of high energy electron and positron beams at the International Linear Collider operated at 1 TeV is presented. Two methods to measure the beam polarization from collision data are investigated: using a modified Blondel scheme with both beams polarized and using the semileptonic W-pair production process.

Outlook

- Include $\gamma \gamma$->fermions background
- Start to study the systematics for the polarization measurement
- Finalize the LC note on the polarization measurement
- Include TGC in the fit

