Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier , Y. Papaphilippou, R. Garcia

ATF2 Project Meeting 23 of January 2013 Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introductior

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西・・ヨ・・ヨ・・ 日・

Parameter	Nominal value
ϵ_X	$1.0 imes 10^{-9}$ rad.m
ϵ_y	1.0×10^{-11} rad.m
Circumference	138m
Energy	1.3GeV
Intensity	1.10 ¹⁰ <i>e</i> ⁻

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Turn by Turn Analysis

Motivation

- 96 new BPMs installed capable of turn by turn measurement.
- Few µm resolution.
- Fast measurement of β functions, coupling, ...
- Combine BPMs data to get tune measurement over few turns.

The Data

- Obtained in December 2012.
- Low intensity (may impact resolution)
- Parasitic measurements, no dispersion measurement.
- Injection data, exciter not used.

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Analysis

Analyzing each BPM individually

- Tunes measurement with FFT (windows to reduce noise influence)
- with sussix or NAFF, measure resonances (amplitude and phase) for:
 - in horizontal plane: $(1, 0)_h$, $(0, 1)_h$, $(2, 0)_h$ and $(3, 0)_h$
 - in vertical plane: $(0, 1)_v$, $(1, 0)_v$, $(1, 1)_v$
- From resonance measurements, with getLLM we get:
 - Twiss functions from amplitudes or phases.
 - Coupling measurement.
 - ► *f*₃₀₀₀ (sextupoles induced resonances).
- Match model for experimental tunes, then compute response matrices.
- From β beating, phase mismatch and coupling, corrections are computed (based on response matrices).

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Simulation parameters

- Perfect MADX lattice.
- Tracking for 1056 turns with MADX PTC.
- Injection at x = 50µm, y = 50µm and t = 0.04m to get about same tunes amplitudes as experimentally.

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Approximative tunes with windowed FFT

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

β_x beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・日本・日本・日本・日本・日本

β_{v} beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y Renier

simulated perfect

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

ϕ_x measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西・・田・・田・・日・

ϕ_y measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・四ト・日本・日本・日本・日本

Correction

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・日本・日本・日本・日本・日本

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Simulation parameters with 1 mismatched quadrupole

- KLQF1R_1 set to nominal +0.1m.
- Tracking for 1056 turns with MADX PTC.
- Injection at x = 50µm, y = 50µm and t = 0.04m to get about same tunes amplitudes as experimentally.

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

β_x beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

β_y beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

ϕ_x measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西・・田・・田・・日・

ϕ_y measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・四ト・日本・日本・日本・日本

Correction

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Simulation parameters with 1 mismatched quadrupole and correction

- KLQF1R_1 set to nominal +0.1m.
- Apply correction computed previously.
- Tracking for 1056 turns with MADX PTC.
- Injection at x = 50µm, y = 50µm and z = 0.04m to get about same tunes amplitudes as experimentally.

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

β_x beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

β_y beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西ト・ヨト ヨー うくや

ϕ_x measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・四ト・日本・日本・日本・日本

ϕ_y measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・四ト・日本・日本・日本・日本

Correction

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西・・ヨト・ 日・ うくの

Approximative tunes with windowed FFT

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

β_x function measurement

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Turn-by-turn BPM

data analysis from the ATF

β_y function measurement

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Turn-by-turn BPM

data analysis from the ATF damping ring

β_{x} beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・日本・日本・日本・日本・日本

β_y beating measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・四ト・ヨト・ヨー もくの

ϕ_x measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

・ロト・西・・田・・田・・日・

ϕ_y measurement

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Correction

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 悪 = のへで

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Basics

Combining BPMs

Classical analysis : Fourier transform of

```
\left(\begin{array}{c} X_{BPM1}(turn \ 1) \\ \vdots \\ X_{BPM1}(turn \ 100) \end{array}\right)
```

Combining BPMs : the Fourier transform of

$$\begin{pmatrix} X_{BPM1}(turn 1) \\ \vdots \\ X_{BPM100}(turn 1) \end{pmatrix}$$

- f must be multiplied by the number of BPMs
- Tune measured in few turns with 96 BPMs !

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Tunes Evolution

100 turns \simeq 50ns

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect lattice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

ntroduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Conclusion & prospects

Conclusion

- Turn by turn data from ATF analyzed.
- Twiss functions measurements demonstrated.
- Correction of Twiss functions looks good.
- Tune measurement in about 30 turns possible.
- It shows evidence of chromaticity.

Prospects

- Convert from MADX strengths to magnet intensity.
- Apply correction at ATF.
- Make chromatic measurements.
- Finalize coupling correction.
- Use wiggling of tunes and/or sidebands for 1 shot chromaticity measurements.

Turn-by-turn BPM data analysis from the ATF damping ring

Y. Renier

Introduction

Analysis with Sussix and GetLLM

Example with simulated perfect attice

Example with 1 mismatched quadrupole

Simulation results with computed correction

Measurement

Analysis combining BPMs

Conclusion and prospects