Brief Summary of ATF2 Status

T. Tauchi 15th ATF2 Project meeting, KEK, 23 -25 January 2013

ATF2 Final Goal Ensure collisions between nanometer beams; i.e. luminosity for ILC experiment					
Reduction of Risk at ILC Optics and bean tuning Stabilization					
FACILITY construction, first result	ATF2/KEK; 1.3GeV	FFTB/SLAC; 47GeV			
	2005-08-13?	1991-93-94			
Optics	Local chromaticity correction scheme; very short and longer L* $(\beta_y=100 \mu m, LFF=30m)$	Non-local and dedicated CCS at upstream; high symmetry in x, y; i.e. orthogonal tuning (β*y=100μm, LFF=185m)			
Design beam size	2.8 μ m / 37nm, aspect=76 ($\gamma \varepsilon_y$ =3 x 10 ⁻⁸ m)	1.92μm /52nm, aspect=37 (γε _y =2 x 10 ⁻⁶ m)			
Achieved	?	70nm (FD jitter remains !)			

Parameter (units)	SLC FF Actual	FFTB Design	NLC FF Proposed
Beam Energy (GeV)	45.6	46.6	250750
Energy Spread (%)	0.15	0.3	0.3
$\sigma_x^* \times \sigma_y^* (\mu \mathrm{m} \times \mathrm{nm})$	2.0 imes 400	1.7 imes 60	0.25×2.5
$\beta_x^* imes \beta_Y^* (ext{mm} imes \mu ext{m})$	6.7 imes2800	10.0 imes 100	10 imes 100
Demagnification	72	380	380
$\gamma \epsilon_x (ext{meter} \cdot ext{radians})$	$6.0 imes 10^{-5}$	$3.0 imes 10^{-5}$	$5.0 imes 10^{-6}$
$\gamma \epsilon_y (ext{meter} \cdot ext{radians})$	$6.0 imes 10^{-6}$	$3.0 imes 10^{-6}$	$5.0 imes 10^{-8}$
Aspect Ratio	5	28	100
Bunch Population	$3.5 imes 10^{10}$	$1.0 imes 10^{10}$	$(0.75 - 1.0) \times 10^{10}$
Repetition Rate (Hz)	120	30	120-180

L* (m) 0.4@IPBSM 1.5-2.5 : Chromaticity $\sim L^*/\beta^*_y$ Table 2.1: Comparison of IP beam parameters for SLC Final Focus, FFTB, and NLC Final Focus.

Figure 2.2: Schematic layout of the Beam Switch Yard. Normal quadrupoles are shown as lenses, bend magnets as large wedges, steering magnets as upright (xcor) or inverted (ycor) small wedges. Pre-existing BPMs are shown as open circles, FFTB BPMs as closed ones.

Beta Matching

Figure 2.3: Schematic layout of the Beta Match region. Notation is as before, with the addition of diamonds to represent skew quadrupoles. Also shown are the locations of the beam reconstruction wire scanner, WS1, and the 16 meter muon shielding wall which permits access to FFTB during SLC running. ; $\beta^*_{x/y}$ from lm/lm to designed values

Figure 2.4: Schematic layout of the CCSX region. Chromatic Correction sextupoles are indicated by hexagons. Also shown is the movable stopper, ST62, which is inserted for incoming beam reconstruction.

Beta exchanger

Figure 2.5: Schematic layout of Beta Exchanger region. Because of strength limitations, the "QT2" magnet is in fact a pair of quadrupoles set at the same strength with a separation of only a few centimeters. The optics contains a horizontal waist at the WS2 location and a vertical waist at the WS3 location.

Changes $\beta_x >> \beta_y$ at SF1 to $\beta_y >> \beta_x$ at SD1, i.e. the horizontal and vertical magnifications are 0.395 and 6.15, respectively.

Figure 2.6: Schematic layout of CCSY region. The CCSY is optically identical to the CCSX, with the exception that the dipole and quadrupole polarities are reversed from one to the other.

Final transformer

Figure 2.7: Final Transformer between the CCSY and the Focal Point. Small hexagons are sextupoles are for correction of residual geometric sextupole aberrations in the line.

Figure 2.8: Arrangement of diagnostic devices at the FFTB Focal Point.

2013年1月23日水曜日

Figure 2.10: FFTB beam optical functions. Shown are $\beta_x^{1/2}$ (dashes), $\beta_y^{1/2}$ (solid), and η_x (dot-dash). The vertical dispersion function, η_y , has a design value of zero everywhere.

Figure 2.11: Chromatically-corrected (dashes) and -uncorrected (solid) beam sizes in the FFTB as a function of β_y^* . The linear monochromatic size is shown (dot-dash) for comparison.

E_b=46.6GeV,
$$\delta$$
 E_b=0.3%, L*=0.4m
 ε_y =32pm, β_y =100 μ m, σ_0 =57nm

Parameters	unit	ATF2	ILC	CLIC	S-KEKB (LER/HER)
Beam Energy	GeV	1.3	250	1500	4/7
L*	m	1	3.5-4.5	3.5	0.47/1.3
γε×	m-rad	5x10-6	1x10 ⁻⁵	6.6x10 ⁻⁷	2.5/3.3x10 ⁻⁵
ε _×	nm	2	1.0 (DR)	0.1 (DR)	3.2/2.4
γεγ	m-rad	3x10 ⁻⁸	4x10 ⁻⁸	2x10 ⁻⁸	1.0/1.2x10 ⁻⁷
Е у	pm	12	2(DR)	1(DR)	13/8.4
$\beta^{*_{X}}$	mm	4	21	6.9	32/25
β* y	mm	0.1	0.4	0.07	0.27/0.41
η '	rad	0.14	0.0094	0.00144	
σ	%	~0.1	~0.1	~0.3	0.08/0.06
Chromaticity	L*/ <i>β</i> * _y	~104	~104	~5x10 ⁴	1.7/3.2x10 ³
σ^*_{\times}	μm	2.8	0.655	0.039	10.2/7.8
σ* y	nm	37	5.7	0.7	59/59

Chromaticity at the FF magnets at the nominal ATF2 optics

2013年1月23日水曜日

Parameters at ATF2

IP Parameter	nominal	May 2010		Feb 2012	Jun 2012	Dec 2012
Beam energy	1.3GeV	1.3GeV		1.3GeV	1.3GeV	1.3GeV
Emittance in x	2 nm	1.7nm		1.8nm	1.3nm	1.4nm* 1.9nm**
Emittance in y	12 pm	<10pm		15.6 pm	31 pm	20 pm* 30pm**
Beta function in x	4 mm	4cm		4cm	4cm	4cm
Beta function in y	0.1mm	lmm		0.3mm	0.1mm	0.1mm
beam size in x by IP carbon wires	2.8 µm	~10 µm	-	11.2µm	11.2µm	11.4µm
beam size in y by IPBSM	37 nm	300 nm 8deg.mode		165nm 30deg.mode	220nm 30deg.mode	73nm* 174deg.mode

* 1x10⁹/bunch/bunch, ** 5x10⁹/bunch

Vertical emittance at DR and EXT

2009	2010	2011	2012
Major works in summer: installation and removal of fast-kicker system	FD alignment, installation of IP-wire, IPBPMs and M-OTRs, new stripline BPM electronics, new EXT kicker control BS3X rolled ~4mr (Mar.)	installation of 1 skew sextupole and removal of 2nd kicker(Jan.) alignment of DR and EXT	Upgrade of IPBSM, installation of 3 skew sextupoles and removal of s- band BPMs of QD0,QF1 and 2 reference cavities@large β replacement of QF1 alignment of DR (Dec.)
Major accidents:		2/16 fire@modulator#0 3.11 earthquake M9.0	no air-conditioning@DR modulator#2 trouble (Nov) 12.7 earthquake M7.3
Optics: $\beta^*_x/y=8$ cm/1mm till Mar. $\beta^*_x/y=4$ cm/1mm	$\beta^*_{x/y}=4$ cm/1mm till Oct. $\beta^*_{x/y}=4$ cm/0.1mm	$\beta^*_x/_y=4$ cm/0.1mm	$\beta^*_x/_y=4$ cm/0.1mm $\beta^*_x/_y=4$ cm/0.3mm in Feb.
IP beam tuning : commission of IPBSM-LW mode till Oct. Commission of IPBSM fringe-scan modes	310±30nm@8deg. in May 280±90nm@6deg. in Dec.	commissioning of IPBSM- LW at 30deg. (Jan-Feb.)	166±7nm@30deg. in Feb. (220nm@30deg. in June) 73±5nm@174deg. in Dec.
Remarks and issues: commissioning of BPM system (res.0.2-0.4um) for orbit measurement (BBA, dispersion)	commissioning of M-OTR system for emittance measurement	wakefield at the M-OTR recovery of the earthquake	3Hz operation since Oct. Wakefield at the large vertical beta function region Emittance growth at EXT

Summary

- 1. IPBSM upgrade was done and commissioned at all degree modes.
- 2. ATF was quickly recovered troubles and earthquake.
- 3. New QF1FF was installed.
- 4. R&Ds are progressing towards the goal 2.
- 5. Present IP beam has M=0.23±0.05 at 174 degree mode of IPBSM,
- it corresponds to the vertical beam size of 73±5nm.

6. The beam size might be limited by the wakefield at large beta function region.

- 7. Another issue is the large vertical emittance at EXT.
- 8. We would like to mitigate these issues to achieve 37nm in 2013.