Brief Summary of ATF2 Status

T．Tauchi

15th ATF2 Project meeting，KEK， 23 －25 January 2013

ATF2 Final Goal

Ensure collisions between nanometer

 beams；i．e．Iuminosity for ILC experiment Reduction of Risk at ILC $\begin{aligned} & \text { Optics and bean tuning } \\ & \text { stabilization }\end{aligned}$| FACILITY construction， first result | ATF2／KEK；1．3GeV | FFTB／SLAC；47GeV |
| :---: | :---: | :---: |
| | 2005－08－13？ | 1991－93－94 |
| Optics | Local chromaticity correction scheme；very short and longer L＊ （ $\beta^{*} y=100 \mu \mathrm{~m}$ ，LfF＝30m） | Non－local and dedicated CCS at upstream；high symmetry in x ，y ；i．e． orthogonal tuning $\left(\beta^{\prime} y=100 \mu \mathrm{~m}, \text { LFF }=185 \mathrm{~m}\right)$ |
| Design beam size | $\begin{gathered} 2.8 \mu \mathrm{~m} / 37 \mathrm{~nm}, \text { aspect }=76 \\ \left(r \varepsilon_{y}=3 \times 10^{-8} \mathrm{~m}\right) \end{gathered}$ | $1.92 \mu \mathrm{~m} / 52 \mathrm{~nm}$ ，aspect $=37$ $\left(r \varepsilon_{\mathrm{y}}=2 \times 10^{-6} \mathrm{~m}\right)$ |
| Achieved | ？ | 70nm（ FD jitter remains ！） |

Quadrupoles
Dipoles Final Quads

Final Focus Test Beam

Parameter（units）	SLC FF Actual	FFTB Design	NLC FF Proposed
Beam Energy（GeV）	45.6	46.6	$250-750$
Energy Spread（\％）	0.15	0.3	0.3
$\sigma_{x}^{*} \times \sigma_{y}^{*}(\mu \mathrm{~m} \times \mathrm{nm})$	2.0×400	1.7×60	0.25×2.5
$\beta_{x}^{*} \times \beta_{Y}^{*}(\mathrm{~mm} \times \mu \mathrm{m})$	6.7×2800	10.0×100	10×100
Demagnification	72	380	380
$\gamma \epsilon_{x}($ meter • radians $)$	6.0×10^{-5}	3.0×10^{-5}	5.0×10^{-6}
$\gamma \epsilon_{y}($ meter • radians $)$	6.0×10^{-6}	3.0×10^{-6}	5.0×10^{-8}
Aspect Ratio	5	28	100
Bunch Population	3.5×10^{10}	1.0×10^{10}	$(0.75-1.0) \times 10^{10}$
Repetition Rate (Hz)	120	30	$120-180$
$L^{*}(\mathrm{~m})$			

Table 2．1：Comparison of IP beam parameters for SLC Final Focus，FFTB，and NLC Final Focus．

Beam Switch Yard

Beta Matching

Figure 2．3：Schematic layout of the Beta Match region．Notation is as
before，with the addition of diamonds to represent skew quadrupoles． Also shown are the locations of the beam reconstruction wire scanner， WS1，and the 16 meter muon shielding wall which permits access to FFTB during SLC running．；$\beta^{*} \times / y$ from $1 \mathrm{~m} / 1 \mathrm{~m}$ to designed values

CCSX

Figure 2．4：Schematic layout of the CCSX region．Chromatic Correc－ tion sextupoles are indicated by hexagons．Also shown is the movable stopper，ST62，which is inserted for incoming beam reconstruction．

Beta exchanger

Figure 2．5：Schematic layout of Beta Exchanger region．Because of strength limitations，the＂QT2＂magnet is in fact a pair of quadrupoles set at the same strength with a separation of only a few centimeters． The optics contains a horizontal waist at the WS2 location and a ver－ tical waist at the WS3 location．
Changes $\beta_{x} \gg \beta_{y}$ at SF 1 to $\beta_{y} \gg \beta_{x}$ at SD1，i．e．the horizontal and vertical magnifications are 0.395 and 6.15 ，respectively．

Figure 2．6：Schematic layout of CCSY region．The CCSY is opti－ cally identical to the CCSX，with the exception that the dipole and quadrupole polarities are reversed from one to the other．

Final transformer

Figure 2．7：Final Transformer between the CCSY and the Focal Point． Small hexagons are sextupoles are for correction of residual geometric sextupole aberrations in the line．

Focal point；$L^{*}=0.4 \mathrm{~m}$ at IPBSM

Figure 2．8：Arrangement of diagnostic devices at the FFTB Focal Point．

Figure 2．10：FFTB beam optical functions．Shown are $\beta_{x}^{1 / 2}$（dashes）， $\beta_{y}^{1 / 2}$（solid），and η_{x}（dot－dash）．The vertical dispersion function，η_{y} ， has a design value of zero everywhere．

Figure 2．11：Chromatically－corrected（dashes）and－uncorrected（solid） beam sizes in the FFTB as a function of β_{y}^{*} ．The linear monochromatic size is shown（dot－dash）for comparison．

$$
\begin{aligned}
& E_{b}=46.6 \mathrm{GeV}, \delta \mathrm{E}_{\mathrm{b}}=0.3 \%, \mathrm{~L}^{*}=0.4 \mathrm{~m} \\
& \varepsilon_{y}=32 \mathrm{pm}, \beta^{*}{ }_{\mathrm{y}}=100 \mu \mathrm{~m}, \sigma 0=57 \mathrm{~nm}
\end{aligned}
$$

Parameters	unit	ATF2	ILC	CLIC	S-KEKB $($ LER/HER)
Beam Energy	GeV	1.3	250	1500	$4 / 7$
L^{*}	m	1	$3.5-4.5$	3.5	$0.47 / 1.3$
$\gamma \varepsilon_{x}$	$\mathrm{~m}-\mathrm{rad}$	5×10^{-6}	1×10^{-5}	6.6×10^{-7}	$2.5 / 3.3 \times 10^{-5}$
ε_{x}	nm	2	$1.0(\mathrm{DR})$	0.1 (DR)	$3.2 / 2.4$
$\gamma \varepsilon_{y}$	$\mathrm{~m}-\mathrm{rad}$	3×10^{-8}	4×10^{-8}	2×10^{-8}	$1.0 / 1.2 \times 10^{-7}$
ε_{y}	pm	12	$2(\mathrm{DR})$	$1(\mathrm{DR})$	$13 / 8.4$
β_{x}^{*}	mm	4	21	6.9	$32 / 25$
$\beta^{*} \mathrm{y}$	mm	0.1	0.4	0.07	$0.27 / 0.41$
η^{\prime}	rad	0.14	0.0094	0.00144	
σ_{E}	$\%$	~ 0.1	~ 0.1	~ 0.3	$0.08 / 0.06$
Chromaticity	$\mathrm{L}^{*} / \beta^{*} \mathrm{y}$	$\sim 10^{4}$	$\sim 10^{4}$	$\sim 5 \times 10^{4}$	$1.7 / 3.2 \times 10^{3}$
σ_{x}^{*}	$\mu \mathrm{~m}$	2.8	0.655	0.039	$10.2 / 7.8$
σ_{y}^{*}	nm	37	5.7	0.7	$59 / 59$

Chromaticity at the FF magnets at the nominal ATF2 optics

Parameters at ATF2

IP Parameter	nominal	May 2010	Feb 2012	Jun 2012	Dec 2012
Beam energy	1.3 GeV	1．3GeV	1．3GeV	1.3 GeV	1.3 GeV
Emittance in x	2 nm	1.7 nm	1．8nm	1．3nm	$\begin{aligned} & \hline 1.4 \mathrm{~nm}^{*} \\ & 1.9 \mathrm{~nm}^{* *} \end{aligned}$
Emittance in y	12 pm	＜10pm	15.6 pm	31 pm	$\begin{aligned} & 20 \mathrm{pm}^{*} \\ & 30 \mathrm{pm}^{* *} \end{aligned}$
Beta function in x	4 mm	4 cm	4 cm	4 cm	4 cm
Beta function in y	0.1 mm	1 mm	0.3 mm	0.1 mm	0.1 mm
beam size in x by IP carbon wires	2.8 mm	$\sim 10 \mathrm{~mm}$	$11.2 \mu \mathrm{~m}$	$11.2 \mu \mathrm{~m}$	$11.4 \mu \mathrm{~m}$
beam size in y by IPBSM	37 nm	300 nm 8deg．mode	$\begin{array}{c\|} \hline 165 \mathrm{~nm} \\ \text { 30deg.mode } \end{array}$	$\begin{gathered} \text { 220nm } \\ \text { 30deg.mode } \end{gathered}$	$\begin{gathered} 73 \mathrm{~nm} \mathrm{~m}^{\prime} \\ \text { 174deg.mode } \end{gathered}$

＊ $1 \times 109 /$ bunch／bunch，＊＊ $5 \times 109 /$ bunch

Vertical emittance at DR and EXT

Major works in summer：

installation and removal of fast－kicker system

Major accidents：

Optics：

$\beta^{*} x / y=8 \mathrm{~cm} / 1 \mathrm{~mm}$ till Mar．
$\beta^{*} x / y=4 \mathrm{~cm} / 1 \mathrm{~mm}$
IP beam tuning ：
commission of IPBSM－LW mode till Oct．
Commission of IPBSM fringe－scan modes

Remarks and issues：

commissioning of BPM
system（res．0．2－0．4um） for orbit measurement （BBA，dispersion．．．．）

FD alignment，installation of IP－wire，IPBPMs and M－OTRs，new stripline BPM electronics，new EXT kicker control BS3X rolled $\sim 4 \mathrm{mr}$（Mar．）
installation of 1 skew sextupole and removal of 2nd kicker（Jan．） alignment of DR and EXT

2／16 fire＠modulator\＃0 3.11 earthquake M9．0
$\beta^{*} \times / y=4 \mathrm{~cm} / 1 \mathrm{~mm}$ till Oct．
$\beta^{*} \times / y=4 \mathrm{~cm} / 0.1 \mathrm{~mm}$

$$
\beta^{*} \times / \mathrm{y}=4 \mathrm{~cm} / 0.1 \mathrm{~mm}
$$

310 ± 30 nm＠$@$ deg．in May commissioning of IPBSM－ 280 ± 90 nm＠6deg．in Dec．LW at 30deg．（Jan－Feb．）
commissioning of M－OTR system for emittance measurement
wakefield at the M－OTR recovery of the earthquake

Upgrade of IPBSM， installation of 3 skew sextupoles and removal of s－ band BPMs of QDO，QF1 and 2 reference cavities＠large β replacement of QF1 alignment of DR（Dec．）
no air－conditioning＠DR modulator\＃2 trouble（Nov） 12.7 earthquake M7．3
$\beta^{*} \times / y=4 \mathrm{~cm} / 0.1 \mathrm{~mm}$
$\beta^{*} x / y=4 \mathrm{~cm} / 0.3 \mathrm{~mm}$ in Feb．

166土7nm＠30deg．in Feb．
（220nm＠30deg．in June）
$73 \pm 5 \mathrm{~nm} @ 174 \mathrm{deg}$ ．in Dec．

3 Hz operation since Oct． Wakefield at the large vertical beta function region Emittance growth at EXT

Preliminary ATF2＠KEK meas121221＿183019

FFTB＠SLAC

Figure 5．6：Laser－Compton beam size measurement performed in May of 1994．The measured size is 77 ± 7 nanometers．

Modulation for 174deg Mode Both assumes no modulation reduction

Figure 5．7：Histogram of measurements made during the last 3 hours of the May， 1994 FFTB run．Average size measured was 77 nm ，with an RMS of 7 nm ．
rms of laser size $=50$ um $->M$ reduction of 10%

Summary

1．IPBSM upgrade was done and commissioned at all degree modes．
2．ATF was quickly recovered troubles and earthquake．
3．New QFIFF was installed．
4．R\＆Ds are progressing towards the goal 2.
5．Present IP beam has $M=0.23 \pm 0.05$ at 174 degree mode of IPBSM，
it corresponds to the vertical beam size of $73 \pm 5 \mathrm{~nm}$ ．
6．The beam size might be limited by the wakefield at large beta function region．
7．Another issue is the large vertical emittance at EXT．
8．We would like to mitigate these issues to achieve 37 nm in 2013.

