FONT R&D status

Philip Burrows Douglas Bett, Neven Blaskovic, Glenn Christian, Michael Davis, Young Im Kim, Colin Perry

John Adams Institute

Oxford University

IP intra-train feedback system - concept

FONT – Feedback On Nanosecond Timescales (Oxford, RHUL, Valencia, CERN, DESY, KEK, SLAC)

FONT beam tests

	NLCTA	ATF(2005)	ATF(2008)	
Beam energy	0.065	1.3	1.3	GeV
Electrons/bunch	0.01	0.1-1	1	10**10
Bunches/train	2000	20	3	
Bunch spacing	0.087	2.8	140-154	ns
Train length	177	56	~300	ns
Train repetition rate	60	1.5	1.5	Hz

FONT beam tests

	NLCTA	ATF(2005)	ATF(200	ATF(2008)	
Beam energy	0.065	1.3	1.3	GeV	
Electrons/bunch	0.01	0.1-1	1	10**10	
Bunches/train	2000	20	3		
Bunch spacing	0.087	2.8	140-154	ns	
Train length	177	56	~300	ns	
Train repetition rate	60	1.5	1.5	Hz	

CLIC-like

FONT prototype history: CLIC

CLIC-relevant: all-analogue systems

NLCTA (SLAC): 65 MeV beam, 170ns train, 87ps bunch spacing

FONT1 (2001-2): First demonstration of closed-loop FB: latency 67ns 10/1 beam position correction

FONT2 (2003-4): Improved demonstration of FB: latency 54ns

> real time charge normalisation with logarithmic amplifiers beam flattener to straighten train profile solid-state amplifier

ATF (KEK): 1.3 GeV beam, 56ns train, 2.8ns bunch spacing

FONT3 (2004-5):

Ultra-fast demonstration of FB: latency 23 ns

3 stripline BPMs high-power solid-state amplifier

FONT beam tests

	NLCTA	ATF(2005)	ATF(2008)	
Beam energy	0.065	1.3	1.3	GeV
Electrons/bunch	0.01	0.1-1	1	10**10
Bunches/train	2000	20	3	
Bunch spacing	0.087	2.8	140-154	ns
Train length	177	56	~300	ns
Train repetition rate	60	1.5	1.5	Hz

FONT beam tests

	NLCTA	ATF(2005)	ATF(2008)	
Beam energy	0.065	1.3	1.3	GeV
Electrons/bunch	0.01	0.1-1	1	10**10
Bunches/train	2000	20	3	
Bunch spacing	0.087	2.8	140-154	ns
Train length	177	56	~300	ns
Train repetition rate	60	1.5	1.5	Hz
			ILC-like	

7

ILC prototype: FONT4 at ATF

FONT ILC prototype status

Bunch-by-bunch feedback for intra-train operation

Stripline BPM resolution in single-pass mode: goal ~ 1um → < 0.5 um achieved (world record?)

BPM processor resolution

- 3 BPM processors (5,7,10) on BPM P2
 8-hour shift:
 - **0.55 0.56 0.60** μm
 - 0.56 0.54 0.51 μm
 - **0.53 0.40 0.35** μm
 - $\textbf{0.50 0.35 0.33 } \mu m$
 - $\textbf{0.45 0.44 0.35} \ \mu \textbf{m}$
 - **0.50 0.43 0.36** μm
- Beam position jitter 3- 4 μ m

expectation from ADC noise alone:

FONT ILC prototype status

Bunch-by-bunch feedback for intra-train operation

Stripline BPM resolution in single-pass mode: goal ~ 1um → < 0.5 um achieved (world record?)

Latency: goal ~ 150ns (shortest possible ILC bunch spacing)

→ 133ns achieved (including cables)

Latency

Latency estimate

•	Time of flight kicker – BPM:	12ns
•	Signal return time BPM – kicker:	32ns
	Irreducible latency:	44ns
•	BPM processor:	10ns
•	ADC/DAC (4.5 357 MHz cycles)	14ns
•	Signal processing (8 357 MHz cycles)	22ns
•	FPGA i/o	3ns
•	Amplifier	35ns
•	Kicker fill time	3ns
	Electronics latency:	87ns
•	Total latency budget:	131ns

FONT ILC prototype status

Bunch-by-bunch feedback for intra-train operation

Stripline BPM resolution in single-pass mode: goal ~ 1um → < 0.5 um achieved (world record?)

Latency: goal ~ 150ns (shortest possible ILC bunch spacing) → 130ns achieved (including cables)

Dynamic range: goal +- 250 nm (250 GeV ILC beam energy) → +- 800 nm achieved

Kick strength

FONT ILC prototype status

Bunch-by-bunch feedback for intra-train operation

Stripline BPM resolution in single-pass mode: goal ~ 1um → < 0.5 um achieved (world record?) CLIC

Latency: goal ~ 150ns (shortest possible ILC bunch spacing) → 130ns achieved (including cables)

Dynamic range: goal +- 250 nm (250 GeV ILC beam energy) → +- 800 nm achieved CLIC

FB performance

FB performance

FB jitter reduction (good beam)

2.1 um \rightarrow 0.4 um

Factor of 5 jitter reduction

FB jitter reduction (good beam)

Bunch 1 Bunch 2 Bunch 3

2.1 um \rightarrow 0.4 um \rightarrow 0.8 um

FB jitter reduction (bad beam)

Bunch 2

Bunch 1

Frequency

Bunch 3

13 um \rightarrow 5 um \rightarrow 3 um

FONT ILC prototype status

- Prototype system designed to meet ILC specifications for IP intra-train FB
- Extensively tested with beam
- Performs well

→ 2 nm beam stabilisation @ 250 GeV

- When ATF beamline was reconfigured for ATF2 we installed 2 kickers and 3 stripline BPMs in upstream section
- Dedicated position + angle FB system
- Emphasis is on quality of beam correction, with y, y' system, in terms of reduction of train jitter
- Typically use 2-bunch train so as to maximise bunch 1 – bunch 2 correlation

FONT5 location at ATF2

FONT5 setup

FONT5 Hardware

Strip-line BPM with mover system

Strip-line kicker

Gain matrix

G (K1 - P2) G (K1 - P3)

G (K2 - P2) G (K2 - P3)

Feedback Performance

(example)

Feedback Performance					
bunch	1	2			
	FB off	FB off			
Jitter P2	3.42	3.42			
P3	3.24	3.21			

Feedback Performance

(example)						
bunch	1		2			
	FB off	on	FB off	on		
Jitter P2	3.42	3.39	3.42	0.64		
P3	3.24	3.16	3.21	1.04		

Feedback Performance

		(exan	n ple)		
bunch	1		2		
	FB off	on	FB off	on	Pred.
Jitter P2	3.42	3.39	3.42	0.64	
1-2 correl	98%				0.67

P33.243.163.211.041-2 correl 97%0.83

$$\sigma_{2}'^{2} = \sigma_{1}^{2} + \sigma_{2}^{2} - 2\sigma_{1}\sigma_{2}\rho_{12} \ge 2\sigma_{r}^{2}$$

Tests (Dec 2011 – April 2012)

- Instrumentation of downstream stripline BPMs as witnesses
- Brief study of variation of ATF2 optics (1 shift)

Additional witness BPMs

07/12 FB Run 23 (nom. optics)

13/12 FB Run 3 (nom. optics)

13/12 FB Run7 (QS,QK off)

MQF15X 15 10 10 10 10 10 1.74 µm 1.74 µm

14/12 FB Run 6 (QK off)

Tests (Dec 2011 – April 2012)

- Instrumentation of downstream stripline BPMs as witnesses
- Brief study of variation of ATF2 optics (1 shift)
- Study of LO phase jitter on FB performance (2 shifts)
- Tests of new firmware including LO phase compensation (2 shifts) study ongoing

Tests (June – Oct 2012)

- Preparations for beam stability in IP region with
- 2-bunch beam:
- 1. Readout of IPBPMs with 2-bunch beam + test of IP kicker

(4 shifts)

2. Upstream FONT FB: record beam in IPBPMs (4 shifts)

→ report in Friday session on ATF2 goal 2

- 3. Feed-forward from upstream FONT BPMs \rightarrow IP kicker: record beam in IPBPMs
- 4. IP FB using IPBPM signal and IP kicker