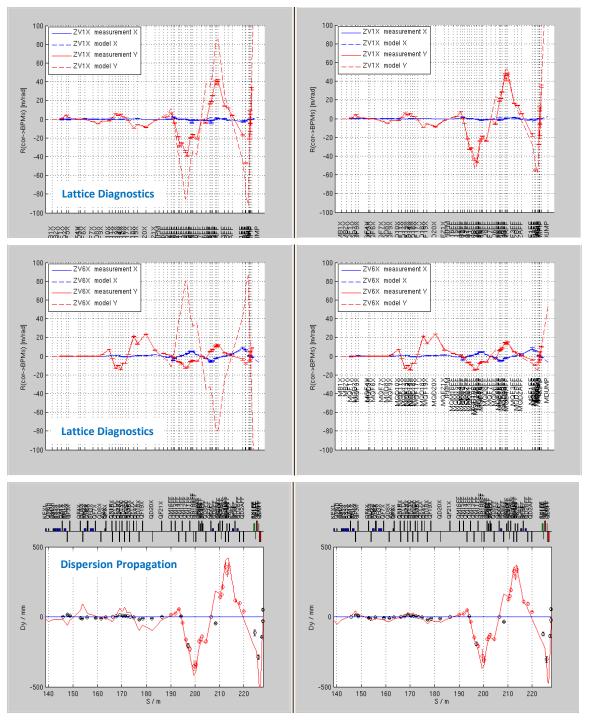

# Summary of Status Towards Goal1 and Future Plans

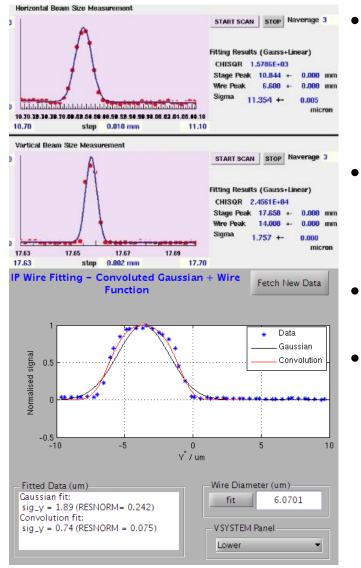
Glen White, SLAC 15<sup>th</sup> ATF2 Project Meeting, KEK January 24 2013


# Overview

- ATF2 IP beam size tuning in context of simulations
- Draft prioritised work list moving forward based on discussions at project meeting
- Discussions



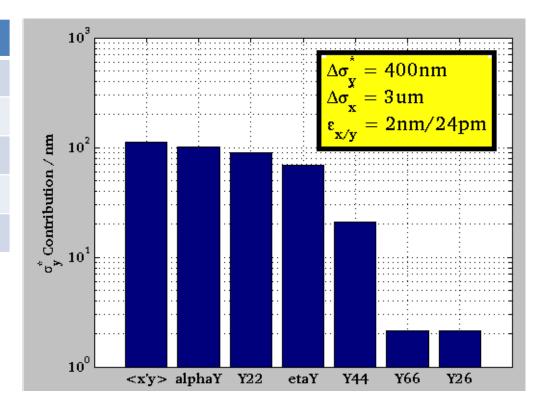



RHS-plots : QD20X  $\Delta$ KL = -4.5%



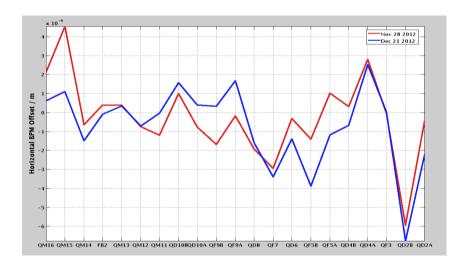
### Connecting ATF2 Tuning Performance to ILC BDS via Understanding of Simulations

- Expected ILC luminosity delivery is reliant on detailed MC simulations of entire BDS tuning process
- Implicit ATF2 goal is to validate these simulations, otherwise can have no confidence in ability for ILC to deliver expected luminosity
  - Taking best possible description of all error sources, does ATF2 tune in the way described by the majority of simulated seeds?
- The route we took to the observed beam size in Dec 2012 not very conducive to such studies, but have a preliminary look now anyway...
- Request for future tuning: make EPICS PVs linked to the multiknob GUI so these can be archived to make it easier to reconstruct all tuning knobs applied.

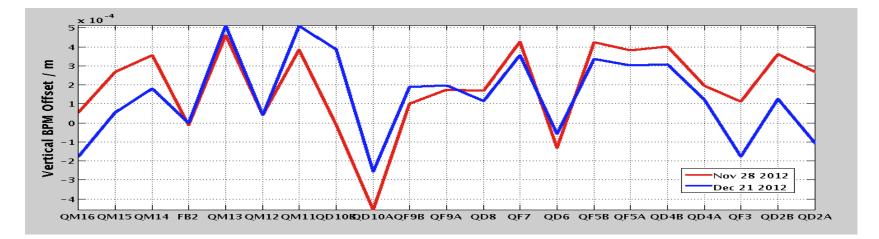

# (1) Assess IP Beam Size Corrections



- Define tuning start as set12nov28\_1000.dat
  - All initial beam tuning done, no sextupole scans yet
  - Record FFS sextupole positions
    - All zero except SF6FF: [-625, -625] um
- Starting beam size is 11.1 um (x), 750nm (y)
  - Y is using convolution fit (may be an underestimate if wire diameter estimate not accurate)
- Define end point as set12dec21\_1840.dat
  Vertical beam size @ IP of 70nm
- Look at changes in sextupole positions and skew-sextupole strengths and orbit between two set points & model expected changes to beam size.
  - Get expected IP aberrations by tracking through Model with 1E5 macro particles and fitting 1<sup>st</sup> and 2<sup>nd</sup> order correlations at IP


#### Sextupole-based Tuning

| FFS Sextupole  | Δ    | x (um) | Δy    | (um) |
|----------------|------|--------|-------|------|
| SF6FF          | -148 |        | -1120 |      |
| SF5FF          | 119  |        | 0     |      |
| SD4FF          | -29  |        | 354   |      |
| SF1FF          | 86   |        | 37    |      |
| SDOFF          | 39   |        | 127   |      |
| Skew Sextupole |      | ΔΙ (Α) |       |      |
| SK1FF          |      | -0.27  |       |      |
| SK2FF          |      | -2.092 |       |      |
| SK3FF          |      | -5.956 |       |      |
| SK4FF          |      | -5.263 |       | •    |



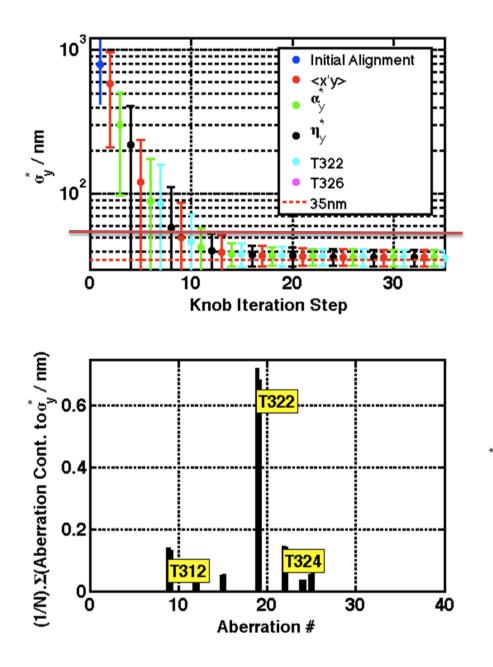

- Modeled response on beam size of tuning changes.
- Strong second order contribution (Y22) of ~90nm.

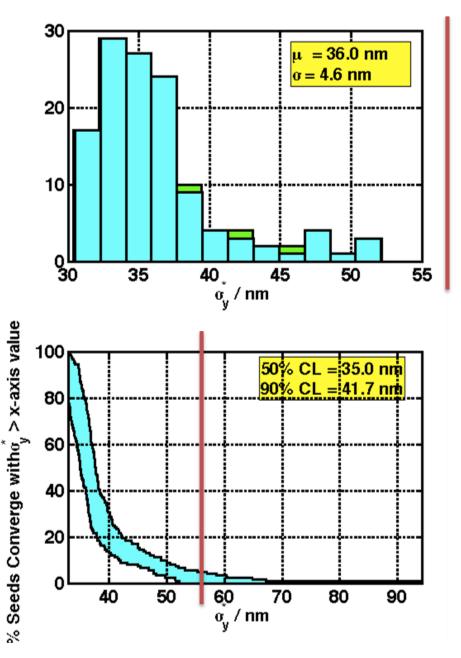
### **Orbit Changes**



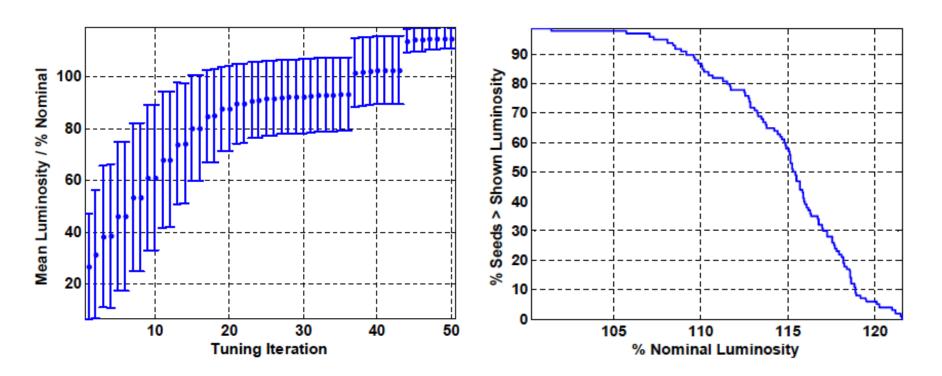
- Orbit averaged over stable few 100 pulses with charge cuts
  - Nov 28 & Dec 21




#### Fit Orbit Change to Include in Model




- Significant orbit drift across tuning period
- Include mover position changes in tracking model
- Absolute orbit for sextupoles important but complete BBA not performed this time.
- Also comparing across large change in charge operations
  - BPM data valid at lowest charge?

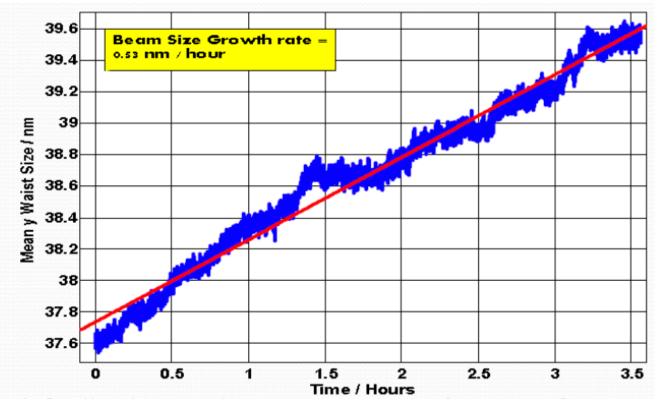

# (2) Compare Results to Simulation

- Assume 70nm @ 25pm == 57nm @ 12pm
   (i.e. have 20nm of uncorrected beam aberrations)
- Where are we on the expected simulated tuning curve?
  - Look at BX10BY1 tuning simulation
- At 57nm, second-order effects are important and we are entering the regime where multiple tuning scans are required to improve on beam size.
- Also difference between RMS and gaussian-core fitted beam size is important here.





# ILC BDS (RDR)




• Tuning time of ILC similar

### Summary – LC Simulation Verification

- Ignoring orbit drift effects, model tuning changes account for 400nm of correction (750-350nm)
  - Rest due to wakefield improvements by dropping charge and lengthening bunch & | orbit changes...
- At ~25pm vertical emittance, expect min sigma\_y=50nm
  - Remaining 20nm of beam size?
    - Still wakefield dominated? Improvements at even lower charge?
    - Other higher-order contributions due to shorted SD4 coil, SK magnet effects, rotated sextupole?
    - Full round of second-order knob tuning still to be done in 174-mode, maybe can improve on 20nm...
- Current data difficult to use for LC simulation verification
  - Long time period over which tuning takes place (many tuning scans)
  - Large FFS orbit drifts
- Dedicated tuning data for LC simulation verification required.
  - After confirmation of <70nm, go back and attempt to tune down from "initial conditions" using optimal number of tuning steps.

#### **Ground Motion**



 Reminder- when get close to goal, beam size drift as function of time due to measured ground motion should become noticeable
 0.5nm / hour

Main Priorities

#### **GOING FORWARD TO GOAL 1**

# Confirm min beam size in 174-degree mode after hardware changes and full round of tuning knobs

#### Assessment of remaining aberrations:

- Wakefields?
  - Fine-grained charge vs. beam size scans (~0.2E9 steps) to see if reached min or still on downward slope using charge cuts on IPBSM software
  - Go lower than 1E9?
- Non-correctable higher-order aberrations due to un-modeled multipole fields?
  - Try different IP beta\_x optics
- Break-down of multiknob orthogonality?
  - Try for better initial conditions to limit sum of sextupole moves
  - Longer-timescale tuning, many iterations of all knobs
  - Alter tuning procedure
    - Automated simplex or dither-style tuning
- <xy> phase coupling
  - alpha\_x vs. sigma\_y scans (also vs. <x'y> 2-d scans) in 174-mode to determine possibility
  - Try different beta\_x optics (consider BX1BY1)
  - <xy> knob using EXT skew-quads & good orbit control in FFS
  - Try to minimise sigma\_x after sigma\_y tuning with disp\_x / alpha\_x knobs

# Improve Understanding of Wakefield Sources & Try Mitigation Techniques

- Repeat orbit and beam size measurements at highest possible extracted charge (>=1e10)
- "Wakefield steering"
  - Improvements to FFS steering software to steer preferentially in high-beta regions and to BPM centres
  - Study steering software, try and get best possible optics modeling etc to aim for ~<50um orbit</li>
- Physical re-alignment of magnets
- Dipole cavities instead of REF on mover
- Think about any possible charge or background dependent systematic effects for IPBSM processing software
- Study expected impact of IPBPM wakes
- Hardware changes:
  - Remove CAV dipoles in high-beta regions
  - Reduction in beampipe radius changes
  - Shield bellows

# Understanding and Correction of Extracted Emittance Growth from DR

- Some specific suspects from December ops
  - Woodley: BS3X skew-sextupole field
  - Okugi: large roll of KEX1
- Analysis from Edu
  - Try to fit a unique set of offsets/rolls to KEX1,BS1X,BS2X,BS3X that explains all Dec measurements
  - If analysis looks promising, try suggested mechanical re-alignment
- Further study of different extracted orbits to find coupling-free extraction
  - 2010 perfect extracted emittance == no coupling
- Bumps etc hard to do around extraction
  - Try mechanical iterative roll/offset alignment changes of devices checking extracted emittance after each change
- High-order multipole fields responsible for increased vertical emittance by coupling changing horizontal beam size?
  - Look for non-linear kicks in jitter/orbit bump tests
  - Simulate and see if required fields would be noticeable in OTR images

# Resign to Continuing Ops @ Low Charge

- Setup of systems to make beam operations easier at these charges
  - e.g. ICT readout scaling, BPM calibration & setup for 1E9
- Or setup at high charge, then drop
  - Disruptive when linac drifts and have to repeat
- Results valid at low charge?
  - Also lower energy spread
  - To get same expected chromatic beam size growth, lower IP beta\_y? (factor 2)
    - Makes tuning more difficult (requires finer cancelation of geometric aberrations of increased chromaticity correction)
    - Already lower W than new ILC parameters, maybe good idea anyway?
    - Ultra-low beta study has shown QD0 multipoles to be a problem when try to lower beta\_y below 0.1mm
  - Need high charge for Goal 2

"Those to whom everything is clear are unhappy people."

- Louis Pasteur