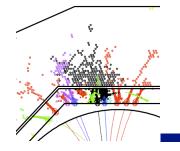
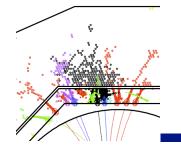
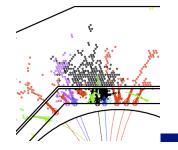
AHCAL Future Plans


Felix Sefkow

CALICE Collaboration Meeting Hamburg, March 21, 2013



- Plans for publishing test beam results
- Overall goals of the project (given the possibility of a Japanese Higgs factory): milestones, timelines...
- Activities of the next year (or so): R&D, construction, bench tests, design work, simulation studies...
- Plans for test beams after the FNAL/CERN shutdowns

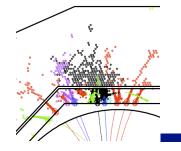

Publication plans

- In the journals:
 - Construction and commissioning
 - electromagnetic response
 - hadronic resolution and software compensation
 - Pandora two particle separation (ECAL + HCAL)
 - TCMT
- On the way / circulating:
 - Pions vs Geant 4
 - track segments
- Preliminary (almost):
 - T3B
 - tungsten
 - (protons)
 - (uniformity)
 - leakage estimation
- To be analyzed:
 - scintillator ECAL and HCAL FNAL data

CALICO Calorimeter for ILC

AHCAL status and future plans

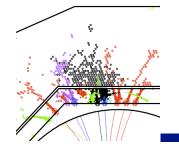
~5 more papers possible



What we learnt

- The technology works, it is robust and reliable.
- The detector simulations are verified with electromagnetic data.
- The hadronic performance is as expected, including software compensation.
- The Geant 4 shower models reproduce the data with few % accuracy.
- Shower substructure can be resolved and is also reproduced by shower simulations.
- Time structure is reproduced by HP simulations.
- Particle flow algorithms are validated with test beam data.

all on this page: done

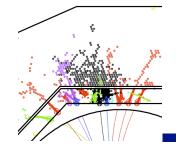


Things to improve

- Test bench characterisation of SiPMs
 - saturation parameters
 - temperature coefficients
- Real-time monitoring
 - layer-based, T corrected
 - real-time compensation
- SiPMs
 - reduce temperature dependence
 - increase dynamic range
 - improve sample uniformity

continuous evaluation at Hamburg lab

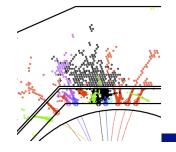
- Calorimeter for IL
- Scalablity and industrialisation


Overall Goals

- Propose a scintillator-based HCAL for the ILC
- Exploit the synergies with scintillator-based ECAL
- Understand advantages and short-comings w.r.t. other options
- Next step: Technological prototype
- Proceed in **parallel** on
 - sensor technology frontier

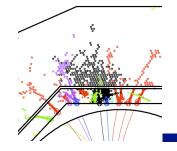
remain open for progress as long as possible / reasonable

- integration and industrialisation frontier
- possible thanks to versatile electronics


AHCAL groups in CALICE

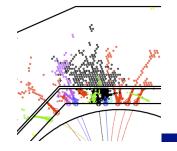
Google

thanks, Katja!



The AHCAL in CALICE

- DESY: steel structures, electronics and integration, test beam support, software, project management
- Hamburg: SiPMs and tile optimisation, test beam and commissioning w/ DESY
- Heidelberg: high gain ASICs, SiPM mass tests and characterisation
- MPI Munich: SiPM development, tile optimisation, cassettes, tungsten timing
- Wuppertal: embedded LED electronics and test stands
- Mainz: DAQ central components, AHCAL data concentrator, mass production
- Omega@LLR: SPIROC ASICs
- CERN: tungsten absorber, testbeam and Geant4 support
- ITEP: tiles and SiPMs, test bench characterisation
- Dubna: power supplies and distribution
- Prague: fibre based LED system, T compensation
- NIU: alternative SiPM coupling, DAQ interface
- Bergen: calibration studies
- Matsumoto, Japan: scintillator strip alternative, photosensors



Case for completing the technological prototypes

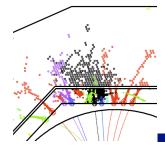
- Performance validation
 - need to re-establish stable operation, perform calibration and time-dependent corrections, measure linearity and resolution and understand in terms of simulation
 - auto-trigger and zero-suppresion represent new challenges
- Test and demonstrate the **scalability**
 - in construction, quality assurance, commissioning, calibration
- Complete the **integration** tasks
 - ASICs, data concentrators, power distribution and cooling
- Progress in industrialisation and cost
 - 8000 m² of 6-layer PCB
- New physics:
 - hadron shower timing
 - needs beam time to exploit the potential

all on this page: still to be done

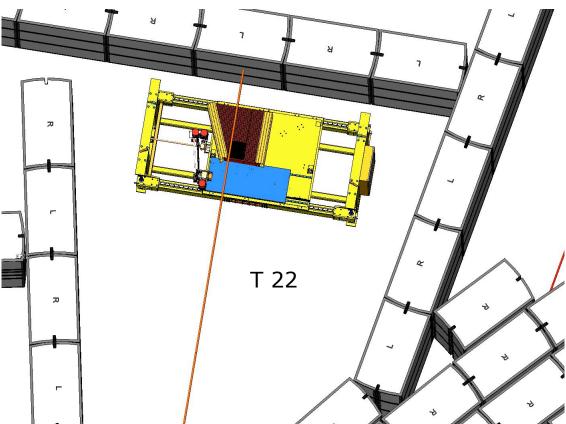
Time scale and milestones

- As usual: resource driven
- Yet, one has to set goals:
- 2013: electromagnetic stack
- 2014: partially instrumented HCAL
- 2015: full HCAL module *technically* possible

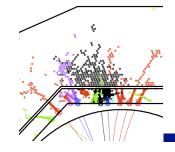
DESY Schedule


DESY Testbeam Schedule 2013 - version of December 14 2012

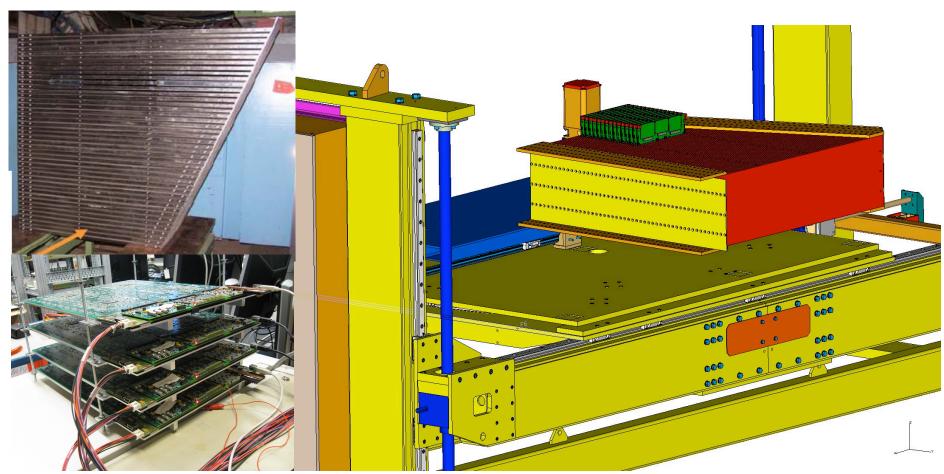
	Week	TB21		ТВ22		TB24/1		TB24
		DATURA	none	Telescope	CAL	Telescope	PCMAG	none
		(telescope)				PCMAG		1
	2							·
14-Jan	3		ITER	Tele setup				Î.
	4	X0			CALICE AHCAL			l.
	5	CMS Pix-irrad			CALICE AHCAL		TPC MMG	ECAL
2-Feb	6	CMS Pix-fwd		ATLASPix			TPC MMG	
	7	CLICpix			SiPM	LorAngle		
	8		SiW ECAL		SiPM	LorAngle		
	9		Sc ECAL	EUTelescope			DESY TPC	
4-Mar	10							<u> </u>
	11	ALICE ITS		MuPix 2			DESY TPC	
	12	CMS Pix-irrad		APIX PPS			DESY TPC	
	13	CMS Pix-KA		APIX PPS			LCTPC Time	
1-Apr			GRPC-SDHCAL	APIX IBL			LCTPC Time	
	15		GRPC-SDHCAL	APIX DBM				
	16	X0		ILCPOL				i
	17		SiW ECAL	ILCPOL		SBS GEM		
	18		SC ECAL		RD50	SBS GEM		1
6-May	19	DEPFET			RD50	LorAngle		
	C13 ²⁰	FE-I4			CAL MMG		GridPix	J
·A-I (CMS Pix-ro			CAL MMG			Belle 2 PID
		X0			CALICE AHCAL			<u> </u>
3-Jun	-	CLICpix			CALICE AHCAL			<u> </u>
	24	CLICpix		MuPix 3	CALICE AHCAL			
	25	ALICE ITS		APIX 3D				PICSEL
	26	CMS Trk II		DIA-SiGe				PICSEL


• shut-down 1.9.-31.12.

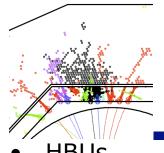
grey = MD



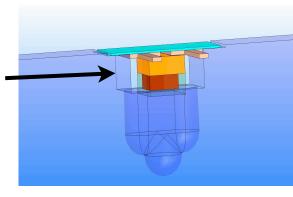
Location

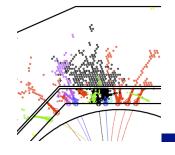


- had to move closer to back wall
- no rotations


Set-up for May

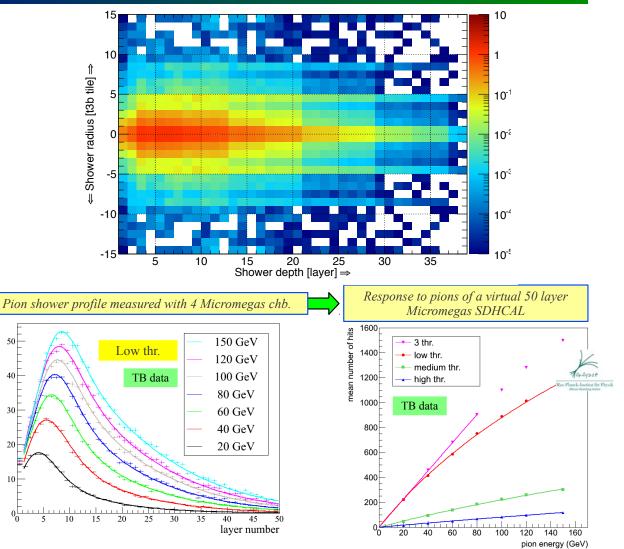
• work on stage and 1-HBU cassettes on track


AHCAL status and future plans



Inventory

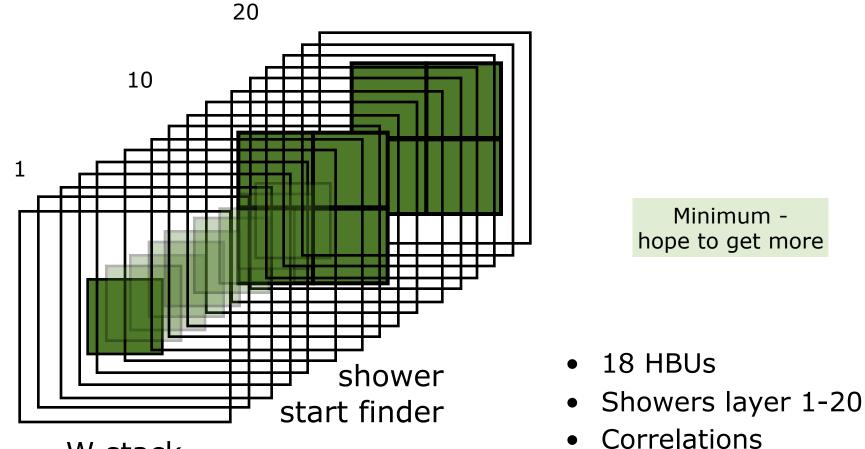
- HBUs
 - 4 CERN test beam
 - 1 more with ITEP tiles characterized at Heidelberg
 - 8 boards ordered, to be delivered in April
- more tiles (in units of HBUs)
 - 2 ITEP fibreless w/ KETEK produced
 - 1 megatile NIU w/ MPPC
 - 8 on the way at HamburgU, wrapped, with KETEK
 - 4 planned with ITEP fibreless / new MPPC
- DIFs: 9+12 prod @ NIU till summer
- CIB, CALIB, POWER: 8-9, re-designed and new production ongoing
- LDA on the way
- DAQ critical, ongoing
- What can we do with ~20 HBUs?



T3B
– 15 tiles

ть Е Жаррон Ө Ө Мнсаг

Micromegas
– 4 layers


AHCAL status and future plans

mean Nhit

Felix Sefkow

Hadron TB in fall 2014

W stack

Calorimeter for

AHCAL status and future plans