End Station A Test Beam Facility ESTB

Carsten Hast

SiD Workshop SLAC, January 16-18, 2013,

ESTB Mission and Layout

- ESTB will be a unique HEP resource
 - » World's only high-energy primary electron beam for large scale Linear Collider MDI and beam instrumentation studies
 - » Exceptionally clean and well-defined primary and secondary electron beams for detector development
 - » Will serve a broad User community

Pulsed magnets in beam switch yard to send LCLS beam to ESA

LCLS and ESTB Beams

- LCLS beam (min and max parameters)
 - » Energy: 2.2 –15.0 GeV; typical around 4 or 13 GeV
 - » Repetition rate: 120Hz
 - » Beam current: 20 to 250 pC; typical 150pC
 - » Beam availability > 95%!
- ESTB beam
 - » Kick the LCLS beam into ESA @ 5 Hz
 - Potential for higher rates when LCLS doesn't need full rate
 - » Primary beam 2.2 -15.0 GeV
 - Determined by LCLS
 - <1.5 x 10⁹ e⁻/pulse (250 pC)
 - » Clean secondary electrons
 - 2 GeV to 13 GeV, 1 e⁻/pulse to 10⁹ e⁻/pulse

Beam Successfully Extracted into A-line

- June 6th:
 - » 3.5 GeV LCLS beam to middle of A-line

Profile Monitor PROF:BSYA:1800 06-Jun-2012 13:12:00

ESTB commissioning: Secondary Beam **Operation August 2012**

We operated the LCLS beam between 3.5 GeV and 6.75 GeV leaving A-line at 3.5 GeV

Inserting a thin screen before the A-line bend we scattered primary LCLS beam

We saw very nice signals of secondary electrons at the ESTB beam dump

/afs/slac/g/testfac/tools/display/tds/edlnew/tdsN3000.edl

(end of ESA)

Building 61: ESA

What's New?

- PPS is now in it's final design and certified
- BCS has been installed and waits for certification with beam
- New dump in ESA capable of accepting 3kW of beam
- Revived lot's of beam diagnostics in the A-line: screens, loss monitors, BPMs
- A-line power supplies changed to 15GeV
- Still have only 2 kicker magnets in the BSY, but have understood and changed trigger timing such that we should be able to send 11GeV primary beam into ESA
- Installed a new target in BSY
 - » Will be able to produce now secondary electrons from all LCLS beam energies 2-15GeV
- In negotiations with the CERN ATLAS Test Beam group to lend us their Silicon Telescope (DESY style) starting this summer for a year. They arte in the process of writing test beam proposals to us as well.

Approved Detector R&D Experiments

- Electromagnetic Shower Damage to Silicon Diode Sensors
 - » PI: Bruce A. Schumm
 - » Institution: UC Santa Cruz
- Proposal for beam tests in ESTB Tests of 3D silicon pixel sensors for ATLAS
 - » PI: Philippe Grenier
 - » Institution: SLAC
- Performance confirmation of the Belle II imaging Time Of Propagation (iTOP) prototype counter
 - » PI: Gary Varner
 - » Institution: University of Hawaii

ESTB Proposals and Run Time

- We had two user meetings so far in 2011 and 2012
 - 40-50 participants each and received about 20 letters of intent for beam time requests
- Currently have 7 formal requests for beam time, 5 are approved and 2 are under review (several informal as well)
 - 3D Silicon Detectors for ATLAS upgrade (Apr. Aug. 2013)
 - Electromagnetic Shower Damage to Silicon Diode Sensor (Apr. Aug. '13)
 - Belle II Imaging Time Of Propagation (Apr. –Aug. 2013)
 - Geosynchrotron radio emission from air showers (late 2013)
 - CLIC Collimator wakefield (2014)
- Expect beam again for ESTB by end of January 2013
- Commissioning from February to March 2013
- User beam time
 - April to August 2013
 - October 2013 to March 2014
 - October 2014 to July 2015

ESTB Proposals Submission and Review Process

- For detector R&D or radiation tests user submits a comprehensive proposal which includes:
 - » PI, members and institutions involved
 - » Short description of the overall physics goals
 - » Detailed description of the experimental apparatus
 - Sketch of the planned layout with dimensions
 - Description of the DAQ system coming with the experiment and what additional DAQ will be needed from SLAC
 - Other electronics components (HV supplies, scopes, etc.)
 - Cooling or gas supply needs
 - Computing infrastructure needs
 - Any other aspect which might be of importance
 - Support needed from SLAC: riggers, technicians, DAQ systems, cooling, gas lines, etc.
 - » Preferred beam parameters and acceptable beam parameters
 - » Estimated installation time
 - » Run plan (e.g. how many data points, how many modifications of the apparatus, etc.)
 - » Preferred running time
 - » Any other aspects of importance

ESTB Proposals Submission and Review Process

- Proposal (2-5 pages) is submitted to C. Hast (hast@slac.stanford.edu)
- Proposal is reviewed by ESTB Scientific Committee
 - » C. Field, P. Grenier, C. Hast, B. Ratcliff + additional members (as needed)
 - » Accelerator physics proposal are send to SAREC for review
 - » Criteria for proposal evaluation:
 - · scientific value
 - feasibility
 - evaluation of resources
 - · scheduling and prioritization
- SAREC will provide a prioritized list of their reviewed proposals to ESTB SC
- Proposal will be reviewed by SLAC Safety Committees as appropriate (ESTB Operations Manager directs this process)
 - Electrical
 - Earthquake
 - Hazardous Experimental Equipment Committee
 - Radiation Physics
 - · etc.
- ESTB Scientific Committee will provide a prioritized list of experiments to the ESTB Operations Manager who will schedule the experiments
- Typical turn around for detector R&D proposals between 1 and 3 months

Becoming a User

- Users will register with the SLAC Users Organization
 - SLUO http://www-group.slac.stanford.edu/sluo/
 - SLUO will work with the PI on a generic MoU between Stanford University and your home institution (mainly about intellectual property rights...)
 - Each individual user needs to agree to that MoU
 - SLUO will get users a SLAC systems ID and a computer account
- We might change to the SSRL/LCLS style user organization, but that will be transparent to ESTB users
- A SLAC Contact will be assigned to each experiment and user
 - This SLAC Contact functions as your supervisor here at SLAC
 - Carsten Hast will be the Operations Manager for ESTB in FY13
- SLAC Contact defines the training requirements
 - Most training can be done remotely via web training (after you have a SLAC system ID)
 - Couple of things on first day of arrival
- We will setup a web page which will lay out what you need to do

Resources @ SLAC

- Your experimental setup should arrive as "ready to go" as possible
- Test Facilities Department will help you installing your experiment
 - Vacuum work
 - Crane operation
 - Small modifications
 - Hook up of gases, water cooling, electricity, etc.
- Alignment group is available on short notice
- → All above covered in ESTB operations budget
- Basic DAQ will provide beam parameters on a per shot basis
- You provide the DAQ for your setup
- We have 64 HV channels, many general purpose ADC (12bit) channels
- Some web cameras
- If you need things which don't exist yet (special gases, cables, lasers, DAQ, etc.) we need time (and money) to provide those
- Contact us early and we discuss about

Preparation of Your Setup

- ESA "Counting House" situated above in the same building and other locations in the Research Yard have some space for experimental setup
 - You can assemble your experiment and test DAQ
 - Limited hardware modifications possible
- → ESA is meant for beam operation so we will try to minimize the idle time during allocated beam time
- Controlled access to ESA is time consuming
 - In-and-out >10 minutes
 - 73 stairs from Counting House to ESA → free "fitness program"
- Loosing the search is an absolute no-no!
 - Takes 5 operators about 2 hours
 - Can only happen during shift change on 2 days in the week
- → Good preparation is key for efficient operation

Setup in ESA

Operations of ESTB

ESTB is mainly operated from ESA-Counting House, with visits to Main Control Center (MCC) and in some cases operated directly from MCC

Basic operation

- Beam energy and bunch charge is defined by LCLS
- LCLS experiments runs for 5 days from Thursday morning to Tuesday morning
 - Time is split between a day and night time LCLS experiment (change of beam parameters likely)
- LINAC maintenance on Wednesday day (PAMM) → no beam to ESA
- 5Hz of LCLS beam to ESA 24/7 (see caveats above)
- Rate may increase when LCLS experiments don't need full rate or have short access
- We will try to stage multiple experiments in ESA to run simultaneously
 - For example: Silicon first followed by some calorimeter

→DAQ should be flexible to cope with changes

- Our DAQ will give you a trigger signal
- Automatically take advantage of higher beam rates
- Beam energies might change
- If parameters become unacceptable for your experiment → turn beam off (BSY kickers off)

LCLS Beam Energies July 2012

LCLS Beam Energies April-July 2012

LCLS Beam Energies by Experiment July 2012

LCLS Beam Energy and Operation of ESTB

SLAC

- LCLS experiments are scheduled months in advance
- Direct correlation between LCLS hutch and beam energy range
- ESTB experiments will be scheduled as compatible with the LCLS boundary conditions as possible
- → You'll need to be flexible

Electrons/Hadrons up to 15 GeV from single particles to full beam intensity

- Clean secondary electrons
 - » p<14 GeV, 1/pulse to 2 x 10⁹ e⁻/p
- Secondary hadrons (later stage)
 - » \sim 0.25 π / pulse < 14 GeV/c (@250pC)

Beam Extraction

0.35

April 3rd:

- » One kicker at 728A
- » Measure beam position far down beam

Puls compensation in kicker reverses Eddy currents in vacuum chamber

→ Next LCLS beam pulse is not disturbed

120Hz LCLS beam

Jerry Va'vra's Focusing DIRC Tests 2006-8

- PEP II 10 GeV electron beam
- Beam enters bar at 90° angle
- Prototype is movable to 7 positions
- Time start from LINAC RF, but correctable with a local START counter

