SiD EMCal Testbeam Prototype

M. Breidenbach for the SiD EMCal and Electronics Subsystems

ECAL

Prototype Goals:

•Replicate full EMCal stack and test – 30 sensors.

20 layers 2.5 mm W (5/7 X0)

10 layers 5 mm W (10/7 X0) 30 gaps 1.25 mm w Si pixels sensors

29 X_0 ; 1 λ

 $\Delta E/E = 17\%/\sqrt{E}$;

Effective Moliere radius = 13 mm

4.3

6

m

Details of EMCal Structure.

Boundary Conditions

- We have 40 nominally good Hamamatsu sensors.
- We have ~20 nominally bad "mechanical prototype" sensors.
- We have 28 remaining KPiXa (1024 channels).
- The KPiXa's come from TSMC with eutectic Sn-Pb bumps in place in wells on the chip.
- The Hamamatsu sensors (EMCal and Tracker) come with Al pads, so there is a layer of Al₂O₃ which must be removed...

Under Bump Metallization (UBM)

- UCD put a huge effort into UBM:
 - » Used the mechanical prototype sensors
 - » Zincate chemistry to remove the Al₂O₃ and plate a stack ending with Au.
 - » Sputtering to directly implant Ti and then a stack ending with Au.
- With miserable results!
 - » Possible explanation is that there is something else on the pads, but SEM sees only Al and O.
- We finally went to IZM in Germany who use a sputtering process.
 - They have bonded 2 KPiXa's to 2 mechanical prototype sensors.
 - » They have bonded 15 KPiXa's to 15 "good" sensors. 2 failed IZM (x-ray) QC.

X-ray image of bumps - IZM

Bonded Sensor

- » UCD has bonded cables to 5; they are being tested at SLAC.
- » UO is probe testing non-cabled assemblies. First results ~now.

KPiX bump bonded to sensor Cable bump bonded to sensor Assembly 1 mm high

Results...for good sensors

- ~90% of pixels calibrate properly
- ~5% pixels appear to be shorted. Calibration charge is shared between two non-adjacent pixels in the same column. Not understood!!
- Other pixels do not calibrate, being studied now.
- An early suspicion was flux remnants under KPiX, "shorting" bumps or pads. Plans to test this very soon.
- UO has probed a few other prototype sensors, and sees ~3% opens.

We do not yet have the corresponding good/open/bad pixel numbers for

the UO sensor.

First Performance Studies

Residuals in Non Pulsed Channels 10⁶ No Channels Pulsed 4 Channels Pulsed (500fC) No Channels Pulsed Gaussian Fit 10⁵ mean: 0.0039225 $\sigma = 0.19807$ Entries: 1000 10 Counts 10² 10¹ 10⁰ -2 0.5 -1.5 -0.51.5 Charge [fC]

Cosmic telescope trigger

Cross talk Study: Red: 4 pixels pulsed at 500 fC, All other channels shown. Blue: no pixels pulsed.

Cosmic Rays. KPiX Self Triggered (pixel by pixel)

Sensor Status

Assembly	Good Slope	Disconnected Pixel	Good Pixels	Shorted Pairs	Possibly Usable
1	896	114	782	70	852 Mechanical prototype
2	920	20	900	90	990
3	955	12	943	60	1003
4	929	30	900	80	979 Very noisy; bad power connection
5	961	6	955	50	1005

With poor statistics, and using shorted pairs, ~98% of pixels will work.

Performance Comments

- The first version of the electronics reading out KPiX gave excellent "analog" performance – e.g. self triggered multiplicity was ~1, and there were no "everything lights up" events.
- This indicates that KPiX and its sensor, cable, and enclosure environment is satisfactory.
- The new electronics, suitable for 32 KPiX, needs more work.
- It is probably ok for the testbeam (short window).

Prototype

Silicon sensors: Meet specs. for SiD Ecal

- low leakage current; DC coupled
- sufficient number for prototype (30 layers)

KPiX: prototypes meet SiD specs.:

- low noise (10% of MIP)
- large dynamic range: ~104
- full digitization and multiplexed output
- passive cooling (power pulsing)

Interconnects:

- Flex cable R&D ok so far successful attachment to dummy sensors and 1 mechanical prototype.
- Main focus of recent R&D is the KPIX sensor interconnects ... recently successful – we think...

Prototype module – circa LOI

Prototype – Engineering Model

Layer Assembly

Layer

Study showing concentrator board

With Cover

Cable Transition Board

- » Clock & trigger LVDS termination
- » Power supply filtering
- » Bias filtering
- » Edge connector
 - Right angle 0.1" pins
 - 18 pins

SiD Meeting January 2013

Cable Concentrator Board

- » Bias input and distribution
- » KPIX power input and distribution
 - Direct AVDD/DVDD feed or local linear regulator
- » Clock, trigger & reset distribution
- » Per sensor command & data connection
- » Concentrator FPGA
- » Optical control and data interface
 - 3.125gbps PGP
- » Optical timing / trigger interface
 - Embedded EVR firmware
 - Optional TTL trigger input

Separate FPGA power connector

Production

- All W plates are in hand.
- Mechanical structure is complete.
- 40 good sensors sent to IZM.
- 28 KPiXa's (all we have) are sent to IZM.
- IZM has produced 1 batch of 15 for evaluation.
- We hope to do a production run on more KPiX 1024 channel chips.
- Probe testing available at UO.
- UCD has bonded and attached 5 cables.
- Now testing cabled sensors at SLAC.
- Assembly and testing of system (pre-testbeam) at SLAC.

Software

- A new back end system that will handle 32 KPiX is being built, and data and calibration formats have been set.
- Data will be accessible with JAS3, and single KPiX testing is underway.
- UO has built a single event display.

Worries

- The yield from IZM is 13/15. Probably ok for this effort; irrelevant for future.
- The yield on cable to sensor bonding is 4/5. May have to better engineer rework capability. Not relevant to production cables.
- Shorts and other problems on sensor assemblies: This is a major concern.
 - » If it is "only" poor flux removal technique, then we can probably fix procedures.
 - » Is it a problem on the sensors? Very difficult to prove.

ESTB Mission and Layout

- ESTB will be a unique HEP resource
 - » World's only high-energy primary electron beam for large scale Linear Collider MDI and beam instrumentation studies

END STATION A

HADRON TARGET

A-LINE

LINAC

Test

EMCal

» Exceptionally clean and well-defined primary and secondary electron beams for detector development

» Will serve a broad User community

Pulsed magnets in pleam switch yard to send LCLS beam to ESA

Test Expectations

- Expect to take data with a precisely synchronous bunch what KPiX was designed for.
- Expect to take data at a range of energies and with mean e⁺ multiplicity ~1.
- Measure energy and spatial resolution.
- Characterize KPiX in "synchronous" mode: noise, cross talk, channel uniformity, etc.
- Most important look for problems with the basic approach.

Backup

KPiX – System on a Chip

- KPiX is a 1024 channel intended to bump bond to Si detectors, optimized for the ILC (1 ms trains, 5 Hz rate):
 - » Low noise dual range charge amplifier w 17 bit dynamic range.
 - » Power modulation w average power <20 μW/channel (ILC mode).</p>
 - » Up to 4 measurements during ILC train; each measurement is amplitude and bunch number.
 - » Digitization and readout during the inter-train period.
 - » Internal calibration system
 - » Noise Floor: 0.15 fC (1000 e⁻)
 - » Peak signal (Auto-ranging)10 pC
 - » Trigger Threshold Selectable (0.1 10 fC)

KPiX – Simplified bock diagram of single channel

Many more details are in:

KPiXD, An Array of Self Triggered Charge Sensitive Cells Generating Digital Time and Amplitude Information. D. Freytag et al. 2008 IEEE Nuclear Science Symposium (NSS)

