Higgs branching ratios study for DBD

ILD and SiD joint physics meeting Jan. 18 2013 H. Ono (NDU)

vvh @ 1 TeV analysis flow

 E_{cm} =1 TeV e⁺e⁻→ $v_e v_e h$ (via WW-fusion) L=500 fb⁻¹ with both P(e-,e+)=(-+0.8, +-0.2) polarization M_h =125 GeV

BG samples: 2f, 4f, 6f: main BGs are vvZ, vlW, eeZ→semileptonic

$h \rightarrow bb$, cc, gg 2 jets channel

- 1. kt jet algorithm (R=1.1): Remove γγ BGs
- 2. Apply LCFIPlus and apply cuts on 2 jets
- 3. Flavor template fitting to extract σ BR accuracies

h→WW*→qqqq 4 jets channel

- 1. kt jet algorithm (R=0.9)
- 2. Apply LCFIPlus and four jet clustering
- 3. Cut with improve signal significance
- 4. Evaluate σBR accuracies

Expected events with L=500 fb⁻¹

S	Signal_samples (L=500fb ⁻¹)								
(Category	$\sigma(-0.8, +0.2)$ (fb)	$\sigma(+0.8, -0.2)$ (fb)	N(-0.8, +0.2)	N(+0.8, -0.2)				
	$q\bar{q}h$	18	12	8,885	6,058				
	$ u ar{ u} \mathrm{h}$	404	33	$202,\!022$	$16,\!549$				
	$\ell\ell h$	25	16	12,501	8,089				
	ffh	447	61	223,408	30,697				

Expected BG events with 500 fb⁻¹

	$Z \to \ell \ell$	2,510	2,214	$1.25 imes 10^6$	1.11×10^6
2f (L=500fb ⁻¹)	$Z \to q \bar{q}$	5,271	3,185	$2.63 imes 10^6$	1.59×10^6
	$2\mathrm{f}$	7,780	$5,\!399$	$3.89 imes 10^6$	2.70×10^6
	lll	8,547	8,431	4.27×10^6	4.22×10^6
vlW→semileptoni	c $_{ u \ell { m qq}}$	7,727	$1,\!197$	$3.86 imes 10^6$	0.60×10^6
4f (L=500 fb ⁻¹)	ννθί	4,929	733	2.46×10^6	$0.37 imes 10^6$
vvZ→semileptonic	$\nu\nu q q, \ \ell\ell q q$	3,844	$2,\!485$	1.92×10^6	$1.24 imes 10^6$
eeZ→semileptonic	qqqq	1,979	213	$0.99 imes 10^6$	$0.11 imes 10^6$
	$4\mathrm{f}$	27,028	13,060	13.5×10^{6}	6.5×10^{6}
	ZWW	234	66	$0.12 imes 10^6$	0.03×10^6
6f (L=500 fb ⁻¹)	$t\overline{t}$	449	170	0.22×10^6	$0.06 imes 10^6$
	6f	693	239	0.35×10^6	0.12×10^{6}

Cuts for $h \rightarrow bb$, cc, gg channel @ 1 TeV

- 1. Visible energy: $40 < E_{vis} < 450 \text{ GeV}$
- 2. Transverse momentum: $P_T > 20 \text{ GeV}$
- 3. Longitudinal momentum: |P_z|<400 GeV
- 4. # of PFOs: N_{PFOs}>20
- 5. $|\cos\theta_{\rm h}| < 0.98$
- 6. Dijet mass: 110<Mh<150 GeV

After all cuts, flavor template fitting is applied

Cuts	$h \to b \bar{b}$	$h \to c \bar c$	$\mathrm{h} \to \mathrm{gg}$	$h \rightarrow other$	2f	4f	6f
Generated	128,701	6,058	19,044	69,605	3,890,180	13,514,000	346,419
E _{vis}	117,196	5,504	17,223	62,132	1,509,560	6,496,150	127,582
P_{T}	111,662	$5,\!266$	$16,\!541$	57,591	397,594	3,728,650	118,476
P_{Z}	111,350	$5,\!247$	16,490	57,494	360,477	3,516,270	117,336
$N_{\rm PFO}$	110,995	$5,\!212$	$16,\!473$	40,567	$198,\!131$	2,337,060	104,438
$ \cos heta_{ m h} $	103,857	4,872	$15,\!533$	38,800	49,689	1,847,580	92,833
M _h	63,883	3,467	9,132	6,895	2,901	93,094	12,839
Efficiency	49.6%	57.2%	48.0%	9.9%	0.1%	0.7%	3.7%

$h \rightarrow bb$, cc, gg template fitting analysis

Jan. 18 2013

$h \rightarrow bb$, cc, gg hadronic channel @ 1 TeV

Flavor template for $h \rightarrow bb$, cc, gg and others are prepared Template fitting is performed to evaluate accuracy of σBR

Measurement accuracies on L=500 fb⁻¹ L/R and 1 ab⁻¹ only with P(-0.8, +0.2)

Integrated luminosity	$500 {\rm ~fb^{-1}}$	$500 {\rm ~fb^{-1}}$	$1 {\rm ~ab^{-1}}$			
Beam polarization $P(e^-, e^+)$	P(-0.8, +0.2)	P(+0.8, -0.2)	P(-0.8, +0.2)			
r_{bb}	1.0000 ± 0.0045	$0.9982{\pm}0.0167$	1.000 ± 0.0033			
r_{cc}	1.001 ± 0.044	$1.039{\pm}0.200$	1.001 ± 0.031			
r_{gg}	0.998 ± 0.032	$1.035 {\pm} 0.158$	0.999±0.022			
$\Delta\sigma BR/\sigma BR(h \to b\bar{b})$	0.45%	1.7%	0.33%			
$\Delta\sigma BR/\sigma BR(h \to c\bar{c})$	4.4%	19.3%	3.1%			
$\Delta\sigma BR/\sigma BR(h \to gg)$	3.2%	15.3%	2.2%			
Higgs mass with B (h→bb) b-likeness						

Flavor tagging efficiency check

Check simple c-likeness cut efficiencies

Require c-likeness>0.8

Signal significance of $h \rightarrow cc$ signf($h \rightarrow cc$)=17.3 with Eff($h \rightarrow cc$)=25%

	h->bb	h->cc	h->gg	h->other	2f	4f	6f	BG all
Mh	63,883	3,467	9,132	6,895	2,901	93,094	12,839	108,834
clikeness>0.8	707	1,512	101	543	166	4,056	593	4,815
Eff Mh	49.6%	57.2%	48.0%	9.9%	0.1%	0.7%	3.7%	0.6%
Eff clikeness	0.5%	25.0%	0.5%	0.8%	0.0%	0.0%	0.2%	0.0%

h→WW* channel @ 1 TeV

 $h \rightarrow WW^*$ (one on-shell W) from Higgs decay

 $h \rightarrow WW^* \rightarrow qqqq$ fully hadronic decay channel is considered

- 1. Apply forced <u>four jet clustering</u> with k_t jet clustering (R=0.9)
- 2. Apply flavor tag for jet associated particles with LCFIPlus
- 3. Jet clustering and paring for W_1 , W_2 (W_1 is on-shell with J_1 , J_2)

(W₁ is on-shell with J₁, J₂) 4. Select best candidate with minimizing χ^2 (e⁻, e⁺)=(-+0.8, +-0.2)

$$\chi^{2} = \left(\frac{\mathbf{M}_{12} - \mathbf{M}_{W}}{\sigma_{W}}\right)^{2} + \left(\frac{\mathbf{M}_{4j} - \mathbf{M}_{h}}{\sigma_{h}}\right)^{2}$$

← Checking with removing M_{4j} since no effect to jet combination

$h \rightarrow WW^* \rightarrow 4j$ cut summary

Cut values	$ \mathbf{h} \rightarrow \mathbf{W}\mathbf{W}^* $	$h \rightarrow other$	2f	4f	6f				
	(hadronic)					20			
Generated	21,976	201,432	3,890,180	13,514,000	346,419				
E _{vis}	18,820	162,621	818,392	3,316,290	43,651	15			
P _T	16,584	140,702	45,223	1,423,250	34,103	1(
P_{Z}	16,456	139,847	42,439	1,379,470	33,924				
N _{PFO}	13,971	86,663	$1,\!655$	354,065	20,226	Ę			
$ \cos heta_{ m j} $	12,898	75,551	801	$259,\!592$	18,410				
$-\log_{10}Y_{45}$	12,897	73,318	766	$256,\!172$	18,333				
$-\log_{10}Y_{34}$	11,391	31,902	258	123,613	16,031				
$-\log_{10}\mathrm{Y}_{23}$	10,938	27,569	234	103,482	$15,\!698$				
$\sum Btag_j$	10,395	10,543	207	86,525	8,649				
M_{W_1}	9,254	8,689	124	54,340	8,066				
M_{W_2}	8,705	7,609	38	$36{,}530$	2,504				
M _h	7,797	6,373	24	13,757	541				
Efficiency	35.5%	3.2%	0.0%	0.1%	0.2%				
$h \rightarrow others mainly comes from h \rightarrow gg$									
Need to	o conside	er this e	ffect or	· improv	e resu	lt			
Jan. 18 2013 ILD and SiD joint meeting for DBD									

Current results of Higgs BR study at 1 TeV

Results are still preliminary and under review in ILD

Integrated luminosity	500 f	$1 {\rm ~ab^{-1}}$	
Beam polarization $P(e^-, e^+)$	P(-0.8, +0.2)	P(+0.8, -0.2)	P(-0.8, +0.2)
$\Delta\sigma BR/\sigma BR(h \to b\bar{b})$	0.45%	1.7%	0.33%
$\Delta\sigma BR/\sigma BR(h \to c\bar{c})$	4.4%	19.3%	3.1%
$\Delta\sigma BR/\sigma BR(h \to gg)$	3.2%	15.3%	2.2%
$\Delta\sigma BR/\sigma BR(h \to WW^* \to 4j)$	2.2%	10.1%	1.5%

We have still contribution from $h \rightarrow gg$ in $h \rightarrow WW^*$ analysis, Consider to include these contribution Need to update my analysis for $h \rightarrow WW^*$ channel

Comments

- How we show results? Luminosity 500_L/500_R
 - Each separately?
 - How about 1 ab⁻¹ with P(-0.8,+0.2)?
- How about the BGs
 - Need other channels? we only include 2f, 4f, 6f
 - 1f_3f is available with small statistics
- How about $h \rightarrow \mu \mu$ in SiD?
 - Calancha Constantino study this channel.

Jan. 18 2013

h→bb, cc, gg right-handed (+0.8,-0.2)

BG reduction summary with same cut condition with left-handed

Cuts	$h \to b \bar{b}$	$h \to c \bar c$	$\mathbf{h} \to \mathbf{g} \mathbf{g}$	$h \rightarrow other$	2f	4f	6f
Expected $\#$ of events	17,768	812	2,566	9,551	2,699,560	6,530,160	119,252
$E_{\rm vis}$	10,415	478	1,482	5,654	1,061,400	3,250,000	42,110
P_T	9,834	448	1,412	5,237	274,644	1,050,350	38,049
P_Z	9,779	446	1,402	5,208	248,259	968,328	37,675
N _{PFO}	9,719	442	1,396	3,675	125,786	493,405	$33,\!592$
$ \cos heta_{ m h} $	8,816	404	1,269	3,388	28,724	372,467	29,632
$M_{ m h}$	5,256	283	740	612	1,699	17,464	4,063
Efficiency	29.6%	34.8%	28.8%	6.4%	0.1%	0.3%	3.4%

h→WW* right-handed case

BG reduction summary with same cut condition with left-handed

Cut values	$\mathbf{h} \to \mathbf{W} \mathbf{W}^*$	$h \rightarrow other$	2f	4f	6f
	(hadronic)				
Generated	2,972	27,725	2,699,560	6,530,160	119,252
E _{vis}	1,462	12,923	578,006	1,691,400	13,428
P_{T}	$1,\!271$	11,090	33,509	285,222	8,600
P_{Z}	1,262	11,021	31,760	274,641	$8,\!553$
N _{PFO}	1,069	6,753	1,062	59,706	$5,\!029$
$ \cos heta_{ m j} $	984	5,893	489	40,486	$4,\!538$
$-\log_{10}Y_{45}$	984	5,695	475	40,130	$4,\!517$
$-\log_{10}Y_{34}$	860	2,460	193	20,817	4,091
$-\log_{10}Y_{23}$	823	2,131	191	17,467	4,024
$\sum Btag_j$	781	822	131	$15,\!419$	1,610
M_{W_1}	694	677	114	8,828	1,478
M_{W_2}	653	585	38	$5,\!892$	499
M _h	586	482	13	2,328	114
Eff	19.7%	1.7%			

Jan. 18 2013

h→WW* background reduction

Jan. 18 2013

ILD and SiD joint meeting for DBD